WOOSIK LEE

woosik@udel.edu \diamond woosiklee.com \diamond 302-509-7345

EDUCATION

University of Delaware, USA Ph.D. candidate in Mechanical Engineering	August 2017 – Present
Korea University, Republic of Korea M. A. in Mechanical Engineering	August 2015 – July 2017
Korea University, Republic of Korea B. S. in Mechanical Engineering	August 2009 – July 2015
RESEARCH EXPERIENCE	
Robot Perception and Navigation Group, University of Delaware Research Assistant	August 2017 – Present Newark, DE
 Simultaneous localization and mapping with multi-sensors (IMU, camera, G Sensor calibration, system initialization, observability analysis, efficient estim Machine learning technique application in robot perception and navigation 	NSS, LiDAR, wheel) nator design
Intelligent Systems and Robotics Laboratory, Korea University Research Assistant	March 2015 - July 2017 Seoul, Korea
Map-based GNSS error modeling in urban environment for autonomous vehWheel intrinsic calibration for autonomous vehicles	icles localization
Telerobotics and Control Laboratory, KAIST Summer Internship	May 2014 - August 2014 Daegeon, Korea

• Human emotion classification with vision and machine-earning

PUBLICATIONS

- [J] Journal Papers
 - [J4] Lee, W., Geneva, P., Chen, C., Huang, G., "MINS: Efficient and Robust Multi-sensor-aided Inertial Navigation System". (Preprint, 2023).
 - [J3] Geneva, P., Eckenhoff, K, Lee, W., Huang, G., "Efficient and Consistent Filter-based Visual-Inertial SLAM". (Preprint, 2023).
 - [J2] Yang Y., Chen, C., Lee, W., Huang, G., "Decoupled Right Invariant Error States for Consistent Visual-Inertial Navigation". IEEE Robotics and Automation Letters (RA-L), 2022.
 - [J1] Lee, W., Cho, H., Hyeong, S., and Chung, W., "Practical Modeling of GNSS for Autonomous Vehicles in Urban Environments". Sensors, 19(19), 4236. (2019).

[C] Conference Proceedings

- [C15] Katragadda, S., Lee, W., Huang, G., "NeRF-VINS: A Real-time Neural Radiance Field Mapbased Visual-Inertial Navigation System". In: Proc. of the IEEE International Conference on Robotics and Automation. Yokohama, Japan, 2024. (Preprint).
- [C14] Lee, W., Huang, G., "Degenerate Motion Analysis, Detection, and Constraint". In: Proc. of the IEEE International Conference on Robotics and Automation. Yokohama, Japan, 2024. (Preprint).

- [C13] Chen, C., Geneva, P., Peng, Y., Lee, W., Huang, G., "Optimization-based VINS: Consistency, Marginalization, and FEJ". In: Proc. of the IEEE International Conference on Intelligent Robots and Systems. Michigan, USA. 2023
- [C12] Chen, C., Geneva, P., Peng, Y., Lee, W., Huang, G., "Monocular Visual-Inertial odometry with Planar Regularities". In: Proc. of the IEEE International Conference on Robotics and Automation. London, UK, 2023.
- [C11] Chen, C., Yang, Y., Geneva, P., Lee, W., Huang, G., "Visual-Inertial-aided Online MAV System Identification". In: Proc. of the IEEE International Conference on Intelligent Robots and Systems. Kyoto, Japan, 2022.
- [C10] Lee, W., Geneva, P., Yang Y., Huang, G., "Tightly-coupled GNSS-aided Visual-Inertial Localization". In: Proc. of the IEEE International Conference on Robotics and Automation. Philadelphia, USA, 2022.
- [C9] Lee, W., Yang Y., Huang, G., "Efficient Multi-sensor Aided Inertial Navigation with Online Calibration". In: Proc. of the IEEE International Conference on Robotics and Automation. Xi'an, China, 2021.
- [C8] Lee, W., Eckenhoff K., Yang Y., Geneva, P., Huang, G., Visual-Inertial-Wheel Odometry with Online Calibration. In: Proc. of the IEEE International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2020.
- [C7] Geneva, P., Merrill, N., Yang, Y., Chen, C., Lee, W., Huang, G., "Versatile 3D Multi-Sensor Fusion for Lightweight 2D Localization". In: Proc. of the IEEE International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2020.
- [C6] Lee, W., Eckenhoff, K., Geneva, P., Huang, G., "Intermittent GPS-aided VIO: Online Initialization and Calibration. In: Proc. of the IEEE International Conference on Robotics and Automation. Paris, France, 2020.
- [C5] Geneva, P., Eckenhoff, K., Lee, W., Yang, Y., Huang, G., "OpenVINS: A Research Platform for Visual-Inertial Estimation. In: Proc. of the IEEE International Conference on Robotics and Automation. Paris, France, 2020.
- [C4] Zuo, X., Geneva, P., Lee, W., Liu, Y., Huang, G., "LIC-Fusion: LiDAR-Inertial-Camera Odometry. IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, November 2019.
- [C3] Lee, W., Chung, W., "Position estimation using multiple low-cost GPS receivers for outdoor mobile robots". In 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (pp. 460-461). IEEE.
- [C2] Jeon, J., Lee, W., Cho, H. J., Lee, H., "A big data system design to predict the vehicle slip". In 2015 15th International Conference on Control, Automation and Systems (pp. 592-596).
- [C1] Lee, H., Lee, W., Kim, J., Jin, J., Kwon, H., Cha, D., Shin, Y., Moon, C., Chung, W., "Drivable Road Region Detection and autonomous navigation of a Surveillance Robot". In International Conference on Engineering and Applied Science, Hokkaido, Japan, June 2015.

[W] Workshop Papers

- [W2] Yang, Y., Lee, W., Osteen, P., Geneva, P., Zuo, X., Huang, G. iCalib: Inertial Aided Multi-Sensor Calibration. In ICRA 2021 Workshop on Visual-Inertial Navigation Systems, Xi'an, China.
- [W1] Geneva, P., Eckenhoff, K., Lee, W., Yang, Y., Huang, G. Openvins: A research platform for visual-inertial estimation. In IROS 2019 Workshop on Visual-Inertial Navigation: Challenges

and Applications, Macau, China.

[R] Technical Reports

- [R4] Yang Y., Chen, C., Lee, W., Huang, G., Supplementary Materials: Decoupled Right Invariant Error States for Consistent Visual-Inertial Navigation. Tech. rep. RPNG-2021-DRI. University of Delaware, 2021.
- [R3] Lee, W., Eckenhoff, K., Yang, Y., Geneva, P., Huang, G., Visual-Inertial-Wheel Odometry with Online Calibration. Tech. rep. RPNG-2020-VIWO. University of Delaware, 2020.
- [R2] Geneva, P., Eckenhoff, K., Lee, W., Yang, Y., Huang, G., OpenVINS Performance Evaluation on 2019 FPV Drone Racing VIO Dataset. IROS 2019 FPV Drone Racing VIO Competition, 2020.
- [R1] Lee, W., Eckenhoff, K., Geneva, P., Huang, G., GPS-aided Visual-Inertial Navigation in Largescale Environments. Tech. rep. RPNG-2019-GPS. University of Delaware, 2019.

PROFESSIONAL ACTIVITIES

• Membership

- Graduate student member of IEEE
- Graduate student member of Robotics & Automation Society

• Reviewer

- IEEE Transactions On Robotics (TR-O)
- IEEE Transactions on Aerospace and Electronic Systems (TAES)
- IEEE Robotics and Automation Letters (RA-L)
- IEEE International Conference on Robotics and Automation (ICRA)
- IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

INVITED TALKS

Multi-Sensor Systems and Degenerate Motions August, 2022

- Multi-sensor fusion (IMU, camera, LiDAR, GNSS, and wheel).
- General degenerate motions of multi-sensor systems.

Efficient Multi-Sensor-aided INS March, 2022

• Multi-sensor fusion with linear interpolation.

• Efficient estimator update with measurement abstraction.

Visual-Inertial Navigation Systems: An Introduction November, 2021

- Visual-inertial navigation system.
- Core algorithms of OpenVINS.

EXTRACURRICULAR ACTIVITIES

• The University of Delaware Korean Graduate Student Association	
President	July 2019 - June 2021
Vice President	July 2018 - June 2019

PATENTS

Motion2Ai, Korea

Motion2Ai, Korea

Center for Autonomous & Robotic Systems, USA

- Variable drive apparatus capable of traveling on the ground and flying in the air, Korea patent 10-1320464 (Awarded by the Korean Intellectual Property Office in October 2013)
- Method for measuring uncertainty of GNSS based localization, Korea patent 10-1921483
- Method for measuring uncertainty of GNSS based localization(pending), The Patent Cooperation Treaty

ACADEMIC SCHOLARSHIPS AND AWARDS

- Summer Doctoral Fellowship: University of Delaware 2018
- Outstanding Graduate Student Scholarship: Dr. Chungs Food Co., Ltd. 2015

TECHNICAL STRENGTHS

- Mathematical Linear algebra, Graph theory, Probability theory, Optimization
 Robotics Computer Vision, Nonlinear Programming, Machine Learning, Dynamics
 Programming C/C++, python, Git, Eigen, PyTorch, CUDA
 Data Processing MATLAB, Microsoft Excel
- **Operating System** Linux, Windows, Robot Operating System (ROS), Docker, AWS
- Hardwares Clearpath Robotics(Warthog, Husky, Jackal), Optitrack, Qualcomm RB5

OPEN SOURCE RESEARCH CODE

- MINS: Efficient and Robust Multisensor-aided Inertial Navigation System
 - Source repository: https://github.com/rpng/mins

- An efficient, robust, and tightly-coupled Multisensor-aided Inertial Navigation System (MINS) which is capable of flexibly fusing all five sensing modalities (IMU, wheel encoders, camera, GNSS, and LiDAR) in a filtering fashion by overcoming the hurdles of computational complexity, sensor asynchronicity, and intra-sensor calibration.

• OpenVINS: An open source platform for visual-inertial navigation research

- Source repository: https://github.com/rpng/open_vins
- Open-source modular on-manifold visual-inertial sliding window extended Kalman filter
- Supports monocular and stereo, SLAM features, First-Estimates Jacobians, visual-inertial simulator, evaluate suite, camera intrinsic and extrinsic calibration and IMU-camera time offset.

- Heavy documentation to support rapid development and research on top of the codebase and detailed derivations of implementation: https://docs.openvins.com/

• Monocular Visual-Inertial Odometry with Planar Regularities

- Source repository: https://github.com/rpng/ov_plane
- A real-time monocular visual-inertial odometry (VIO) system leverage environmental planes.

- Real-time regularization of point features to environmental planes in both in-state SLAM and out-of-state MSCKF point features enabling long-term point-to-plane loop-closures.