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Abstract— In this work, we present a comprehensive analysis
of the application of the First-estimates Jacobian (FEJ) design
methodology in nonlinear optimization-based Visual-Inertial
Navigation Systems (VINS). The FEJ approach fixes system
linearization points to preserve proper observability properties
of VINS and has been shown to significantly improve the esti-
mation performance of state-of-the-art filtering-based methods.
However, its direct application to optimization-based estimators
holds challenges and pitfalls, which we addressed in this paper.
Specifically, we carefully examine the observability and its
relation to inconsistency and FEJ, based on this, we explain how
to properly apply and implement FEJ within four marginal-
ization archetypes commonly used in non-linear optimization-
based frameworks. FEJ’s effectiveness and applications to
VINS are investigated and demonstrate significant performance
improvements. Additionally, we offer a detailed discussion of
results and guidelines on how to properly implement FEJ in
optimization-based estimators.

I. INTRODUCTION AND RELATED WORK

Extensive research has been devoted to the visual-inertial
3D motion tracking problem due to its prevalence in enabling
consumer experiences (e.g., AR/VR) and robotic autonomy
[1], [2]. Visual-Inertial Navigation Systems (VINS) address
this problem by taking advantage of a high-frequency inertial
measurement unit (IMU) and information-dense camera to
estimate the 6 degree-of-freedom (DoF) pose and its corre-
sponding uncertainty [3]. There are two families of VINS
estimators generally: 1) efficient filter-based methods which
only perform linearization once, and 2) optimization-based
methods which formulate a nonlinear least-squares (NLS)
problem with all available measurements. The latter performs
relinearization with a higher computational burden.

A common visualization technique in the optimization-
based method is the “factor graph” [see Figure 1]. Factor
graphs represent states as nodes and measurements as edges
that connect to their involved states [4], [5]. Significant
research efforts have been concentrated on reducing the com-
putational complexity through methods such as inertial prein-
tegration [6]–[8], incremental smoothing [9], [10], sliding-
window or keyframing marginalization schemes [11]–[15], or
information sparsification methods [16], [17]. Optimization-
based VINS continue to grow in popularity given their
capability to decrease errors through relinearization and the
aforementioned methods aimed at boosting efficiency.

An inherent challenge to VINS is preventing information
gain in the unobservable state space corresponding to the
4 DoF global yaw and position of the platform [18], [19].
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However, due to the nonlinear nature of VINS, which
requires linearization of both the system dynamics and mea-
surement functions, discrepancies between sequential lin-
earization points causes information to be mistakenly gained
along unobservable directions, leading to over-confident un-
certainty estimates, reduced accuracy, and inconsistent esti-
mation [18].

To address this issue within the filter-based context,
“observability-aware” estimators have been proposed, such
as robocentric state representation [20], [21], invariant error
state formulation [22], [23], observability-constrained (OC)
[18], [24], and First-estimates Jacobian (FEJ) methodology
[19], [25], [26]. The FEJ technique has become popular
for its simplicity and significant performance improvement
compared to others. However, in the literature, the consis-
tency and application of FEJ to optimization-based VINS
estimators have not been extensively explored. This is mainly
because identifying the right state variables to be fixed is
challenging as it closely relates to VINS observability and
the leveraged state marginalization procedure.

Several research efforts have attempted to integrate
observability-aware methodologies into optimization-based
VINS. For example, the Prior-Linearization (PL) fixed-lag
smoother was presented by Dong-Si and Mourikis [27]
leveraged the “prior” estimates (i.e., the “first-estimates” at
marginalization) when evaluating Jacobians involved with
the marginal prior factor to address the linearization discrep-
ancy. Huang et al. [28] extended this work to leverage the
observability-constrained (OC) method and reduced potential
linearization errors caused by FEJ, while enforcing that the
4 DoF nullspace remains valid. Other recent works, such
as OKVIS [12], [29] and Basalt [17] have applied FEJ to
the marginalized prior factor to avoid the erroneous accu-
mulation of information, but do not modify the linearization
points of measurements involved with remaining states (i.e.,
the IMU preintegration and camera observations connected
to the states linked to marginal prior factor) nor evaluate
system consistency.

The use of the invariant state SE2(3) representation [30],
has attracted attention due to its ability to satisfy observ-
ability properties without special modification. It has been
argued that using invariant state representations with an-
chored features ensures consistency and enables consistent
estimation [31]–[34]. However, due to the specialized nature
of the invariant state space, it is difficult to leverage arbitrary
state representations and maintain consistency (e.g., global
feature representation [23] requires special care).

The VI-DSO [35] and DM-VIO [36] have also paid partic-
ular attention to the use of FEJ during marginalization. DM-
VIO introduced the concept of “delayed marginalization”
which improves traditional marginalization by allowing for



the relinearization of typically marginalized states which
have not converged. While these works have shown promis-
ing directions for addressing the consistency of optimization-
based VINS, a detailed numerical study of how FEJ relates
to observability, evaluation of the consistency of the state
estimate, how different marginalization strategies impact
consistency, and how to apply FEJ within the factor-graph
context is missing from the literature.

In this study, we conduct a thorough analysis to shed
light on the impacts of integrating the FEJ methodology
into optimization-based VINS. In particular, we explore the
application of FEJ with different marginalization strategies
and under different sensor noise levels. We also offer a
practical and detailed guide for researchers and engineers
to effectively apply FEJ methodology to their systems. The
primary contributions of our work include:

• A comprehensive analysis of the significance and
effectiveness of incorporating FEJ methodology into
optimization-based VINS algorithms.

• We investigate and evaluate the performance of four
state-of-the-art marginalization archetypes most com-
monly used in optimization-based VINS.

• Our numerical studies include an in-depth examination
to determine the optimal strategy for applying FEJ to
different scenarios and provide a detailed guide.

II. OPTIMIZATION-BASED VINS
We formulate the NLS problem over the entire trajectory

up to the current time tk. The system state consists of the
current navigation states, xk, and 3D features, xf :

x0:k =
[
x⊤
0 . . . x⊤

k x⊤
f

]⊤
(1)

xk =
[
Ik
G q̄⊤ Gp⊤

Ik
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a

]⊤
(2)

xf =
[
Gf1

⊤ . . . Gf⊤g
]⊤

(3)

where I
Gq̄ is the unit quaternion1 that represents the rotation

I
GR from global frame {G} to the IMU frame {I}; GpI and
GvI are the IMU position and velocity in {G}, respectively;
bg and ba are the gyroscope and accelerometer biases; and
the feature state, xf , comprises the global position of g
landmarks.

A. Batch-MAP Formulation
At timestep tk, the batch maximum a posteriori (MAP)

seeks to solve for the history of the state estimate x0:k by
maximizing the posterior PDF leveraging: 1) prior informa-
tion N (x̂0,P0), 2) IMU motion constraints u, and 3) camera
observation measurements z:

p ∝ p(x0)

k−1∏
i=0

p(xi+1|xi,uk)
∏

zi,j∈Z0:k

p(zi,j |xi, fj) (4)

1Throughout the paper, x̂ is used to denote the current best estimate
of a random variable x with δx = x ⊟ x̂ denotes the error state. For
the quaternion error state, we employ JPL multiplicative error [37] and use
δθ ∈ R3 defined by the error quaternion i.e., δq̄ = q̄⊗ ˆ̄q−1 ≃ [ 1

2
δθ⊤ 1]⊤.

The “⊞” and “⊟” operations map elements to and from a given manifold
and equate to simple “+” and “-” for vector variables.

where the set Z0:k denotes all measurements between [t0, tk].
Under the Gaussian distribution assumption, maximizing the
above PDF is equivalent to minimizing:

C(x0:k) = Cp0
+

k−1∑
i=0

CIi +
∑

zi,j∈Z0:k

Cfij (5)

where we define the following costs (we refer the reader to
the technical report for detailed equations [38]):

Prior: Cp0 =
1

2
||x0 ⊟ x̂0||2P0

(6)

Inertial: [7] CIi =
1

2
||xi+1 ⊟ f(xi,ui)||2Qi

(7)

Camera: [39] Cfij =
1

2
||zij ⊟ h(xi, fj)||2Rij

(8)

where ||a||2W := a⊤W−1a and can be solved iteratively
given an initial linearization point. The second-order Taylor
series of the l-th iteration with linearization point x̂l

0:k is:

C(x̂l
0:k ⊞ δxl

0:k) ≃ C(x̂l
0:k) + bl⊤δxl

0:k +
1

2
δxl⊤

0:kA
lδxl

0:k

where δxl
0:k is the state correction, Al the Hessian, and bl

the gradient. We thus have the updated state x̂l+1
0:k via:

Alδxl
0:k = −bl ⇒ x̂l+1

0:k = x̂l
0:k ⊞ δxl

0:k (9)

Note that Gauss-Newton approximates the Hessian Al using
the first derivative [40].

III. MARGINALIZATION AND CONSISTENCY

Ideally, as the robot moves through the environment and
observes new features, one could reformulate the batch-MAP
problem and solve the objective function, Eq. (5), using
all measurements. However, as the state size grows larger,
this quickly becomes prohibitively expensive (complexity is
O(n3) in terms of state size) for real-time estimation. It thus
becomes necessary to apply state marginalization techniques
to bound computational complexity.

This marginalization directly leads to problematic incon-
sistencies as states become permanently approximated and
fixed (i.e., the marginalized states) as the observability prop-
erties deviate from the batch-MAP estimator [27]. The esti-
mator erroneously believes it has gained information along
directions that it can not measure, resulting in overconfident
estimates. This inconsistency can be a significant problem,
degrading accuracy and making the estimator unreliable. In
the following sections, we will explain the inconsistency
problem arising from state marginalization.

A. State Marginalization

The graph is partitioned into three sets: the to-be-
marginalized states xM , the remaining states connected to
xM , which are referred to as xR (also known as the Markov
blanket), and the new states not involved, denoted as xN .
Before marginalization, the MAP cost C(x0:k) at tk is:

C(xM ,xR,xN ) = Cmr(xM ,xR) + Crn(xR,xN ) (10)

where Cmr contains all costs involving xM and xR, and Crn
contains all costs involving xR and xN . As xM and xN have
no joint costs, the minimization of the total cost is:



min
xM ,xR,xN

C(xM ,xR,xN )

= min
xR,xN

(
min
xM

Cmr(xM ,xR) + Crn (xR,xN )

)
To solve the above problem, we minimize Cmr with respect
to xM as:

Cmr ≃ C(x̂M (k), x̂R(k)) + bM (k)⊤
[
δxM (k)
δxR(k)

]
+

1

2

[
δxM (k)
δxR(k)

]⊤
AM (k)

[
δxM (k)
δxR(k)

]
(11)

bM (k) =

[
bmm(k)
brm(k)

]
, AM (k) =

[
Amm(k) Amr(k)
Arm(k) Arr(k)

]
where x̂(k) denotes the best state estimate at time tk,
bM (k) and AM (k) are the gradient and Hessian matrix
computed using x̂(k), respectively. The optimal value of
min
xM

Cmr(xM ,xR) is:

Cmr ≃ α+ bp(k)
⊤δxR(k) +

1

2
δxR(k)

⊤Ap(k)δxR(k)

bp(k) = brm(k)−Arm(k)A−1
mm(k)bmm(k) (12)

Ap(k) = Arr(k)−Arm(k)A−1
mm(k)Amr(k) (13)

where α is independent from state xR and xM . This cost is
now independent of xM resulting in computational savings
while approximating the original non-linear costs with a
second order Taylor-series and permanently fixes its lin-
earization at tk (see Eq. (12) and (13)).

B. System Observability

We now investigate the system observability properties
before (tk) and after marginalization (tk′ ). This analysis
follows the work of [27], [41] and [28] with the further
extension to include inertial biases (we refer the reader to
the companion technical report [38]). We first consider the
full batch-MAP state Hessian Ak′ at time tk′ :

Afull
k′ =

Amm(k′) Amr(k
′) 0

Arm(k′) Arr(k
′) Arn(k

′)
0 Anr(k

′) Ann(k
′)

 (14)

One can see that all the states have been evaluated at the
latest timestamp tk′ . Considering the case when marginal-
ization has been performed at time tk, and the state has been
optimized with measurements at the following time tk′ :

Amarg
k′ =

Amm(k) Amr(k) 0
Arm(k) Arr(k) +Arr(k

′) Arn(k
′)

0 Anr(k
′) Ann(k

′)

 (15)

It can be proved that (see [38], [41]):
rank(Afull

k′ ) < rank(Amarg
k′ )

dim(N(Afull
k′ )) > dim(N(Amarg

k′ ))
(16)

where N(A) is the nullspace of A.
This implies that by performing marginalization, which

fixes the information related to the marginal and remaining
states at time tk, spurious information has been gained to
cause a loss of nullspace dimension and leading to inconsis-
tencies. We can inspect the nullspace of Afull

k′ to see:

N(Afull
k′ ) =

[
N⊤

x0
· · · N⊤

xk′ N⊤
f0

· · · N⊤
fg

]⊤
(17)

N⊤
xi

=

[
(IiGR g)⊤ (⌊GpIi⌋g)⊤ (⌊GvIi⌋g)⊤ 01×3 01×3

03 I3 03 03 03

]
Nfj =

[
⌊Gfj⌋g I3

]
(18)

where g denotes the global gravity.
Remark: The 4 DoF unobservable directions can be

interpreted as the last three columns corresponding to global
translation, while the first column corresponds to the global
rotation about the gravity vector (yaw). The marginalization
of states at tk make Amarg

k′ gain rank and N(Amarg
k′ ) lose rank

about the global yaw. This analytical nullspace also shows
that only orientation, position, velocity, and features affect
the dimensionality, and therefore, there is no need to FEJ
the biases or auxiliary variables.

IV. MARGINALIZATION AND FEJ
In this section, we discuss how the First-estimates Jaco-

bian (FEJ) methodology is leveraged to prevent erroneous
information gain due to marginalization. The key idea is to
evaluate the Hessian using the first estimate x̂R(k) instead of
the current estimate x̂R(k

′) for all states xR involved with
the marginal (the second cost in Eq. (10)):

C(x(k)) ≃ C(x̂R(k
′), x̂N (k′)) + b(x̂R(k), x̂N (k′))⊤δx(k′)

+
1

2
δx(k′)⊤A(x̂R(k), x̂N (k′))δx(k′) (19)

where δx(k′) = [δxR(k
′)⊤ δxN (k′)⊤]⊤. Note that the

linearization point of xR only needs to be changed for the
Hessian A(x̂R(k), x̂A(k

′)) and gradient b(x̂R(k), x̂N (k′))
computation, while the residual and states which do not affect
the observability properties can use the best estimates (e.g.,
biases, see Eq. (17)). Algorithm 1 outlines this process.

Implementation Guide: We perform simple “bookkeep-
ing” of the xR states that need to use their first estimates.
During marginalization, for states that have not been FEJ’ed
yet, we record the current estimate as the FEJ for the states
in xR which appeared in the nullspace, see Eq. (17), as
they impact consistency. Subsequently, factors connected to
xR should use FEJ for the states which have been FEJ’ed,
x̂R(k), during Jacobian evaluation, while the others leverage
the best estimate, x̂R(k

′) or x̂N (k′).

Algorithm 1 Sliding-window optimization VINS with FEJ
Build factor graph and perform iterative optimization:

• Construct optimization problem using all measurements at
timestamp t(k′) [see Eq. (5)] and linearize the cost function
using the following linearization points:
– If state has FEJ: Use its first estimate x̂(k)
– Else: Use its best updated estimate x̂(k′)

• Solve and correct the state [see Eq. (9)].
State marginalization:

• Select the states in xM to be marginalize.
• For each state in xR connected to xM :

– If state in nullspace [Eq. (17)] and not FEJ’ed: Record
the current estimate as its FEJ value.

• Perform marginalization and calculate new prior information
and gradient [see Eq. (12), (13)].

For example, a camera observation measurement factor
which relates a feature not connected to the marginal prior
but is observed from a pose connected to such prior should
have its Jacobians evaluated using the best feature estimate
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Fig. 1: Four marginalization cases with the to-marginalized
nodes in a red box and edges (measurements) that are
“dropped” being crossed out. Nodes with fixed linearization
points are shaded in red, while dashed red edges denote
those evaluated and linearized with FEJ. The factor graph
includes bearing observations z, inertial measurements u,
and the prior p0. State variables (nodes) are represented
as grey circles, and measurements (edges) connect related
states. fj is the jth feature, Ti is robot pose at ti, vi and bi

are the robot velocity and biases.

and the first pose estimate recorded when marginalization
was performed. In what follows, we detail how marginal-
ization strategies impact the connectivity of states to the
marginal prior and thus FEJ.

A. KEEP
The simplest case is marginalizing only the inertial states

while keeping a map of environmental features. As shown in
Figure 1a, after marginalization, both features and the oldest
inertial states become involved with the marginalized prior,
thus requiring the fixing of many states. Specifically:

• FEJ States: T1, v1, f1, f3 since they connect to prior
and are the “remaining” states (Markov blanket).

• FEJ Factors: All factors besides z22 since it connects
to uninvolved states.

It is clear that while keeping features enables future observa-
tions to improve accuracy, it densifies the prior information,
leading to increased computational costs and requiring FEJ
for many states (e.g., most features).

B. DROP
A commonly used method involves dropping information

to retain the sparsity of the prior [12], [13], [17]. Figure 1b
illustrates that by dropping z01 and z03, the new prior factor
p1 is not involved with the feature states. Specifically:

• FEJ States: T1, v1 since they connect to prior and are
the “remaining” states (Markov blanket).

• FEJ Factors: All factors besides z21, z22, z23 since
they connect to uninvolved states.

This method offers the benefit of improved sparsity and
avoids the need to perform FEJ on the feature states. How-
ever, it comes at the cost of a new sub-optimal problem
containing less constraint information about the features.

C. MARG
Another common case is to completely marginalize fea-

tures observed by the to-be-marginalized inertial state. As
shown in Figure 1c, this marginal prior now relates to all
poses from which the features have been observed. Specifi-
cally:

• FEJ States: T1, v1, and T2 since they connect to prior
and are the “remaining” states (Markov blanket).

• FEJ Factors: All factors have some portion of their
Jacobians FEJ’ed

In this case, the marginal prior density has increased, but
the state size has decreased significantly, likely providing
significant computational benefits. However, a key downside
is that future feature observations cannot be leveraged (i.e.,
they are treated as new features), and all poses need to be
FEJ’ed, while the velocity v2, the remaining feature f2, and
biases are still not required to be.

D. CKLAM
Another promising approach is the CKLAM marginal-

ization technique [11] (which has been recently adopted
in [14]). As shown in Figure 1d, to preserve the sparse



Fig. 2: Simulated Gore trajectory (221m), with green and
red circles marking the starting and ending points and
magenta simulated point features.

TABLE I: Simulation parameters and prior standard devia-
tions for measurement perturbations.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-4 Gyro. Rand. Walk 1.9393e-5
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Cam Freq. (Hz) 10 IMU Freq. (Hz) 400
Num. Clones 10 Tracked Feat. 100

Min. Track Length 5 Max. SLAM Feat. 25

structure of the optimization problem, to-be-marginalized
feature f1 is duplicated along with its measurements z01
and z11 connecting to the to-be-marginalized inertial states
(note that f1 is observed at t3 as it would be otherwise
marginalized), and then this new feature f ′1 is marginalized
alongside the inertial states. All other feature measurements
(e.g., z12 and z03) related to the to-be-marginalized states,
which do not sufficiently constrain their feature, are dropped,
introducing a loss of information. Specifically:

• FEJ States: T2, v2 since they connect to prior and are
the “remaining” states (Markov blanket).

• FEJ Factors: All factors have some portion of their
Jacobians FEJ’ed

CKLAM reduces to the DROP case, see Section IV-B,
when only a single inertial state is marginalized (e.g., a
sliding window). However, for multiple states, it enables
the inclusion of feature observation information into the
prior factor without increasing computational complexity
while minimizing information loss. This makes CKLAM
appealing for its computational efficiency and accuracy gains
in “shifting” window and keyframe-based VINS.

V. NUMERICAL STUDY

We simulate a realistic indoor 221 meter (m) three-floor
dataset, see Figure 2. The system leverages the OpenVINS
simulator [39] to generate realistic visual bearings and iner-
tial measurements using the parameters listed in Table I. We
leverage CPI preintegration [7] to create the inertial factor
and use Ceres Solver [42] for optimization. The metrics used
are Absolute Trajectory Error (ATE) [43] and Normalized
Estimation Error Squared (NEES) [44], which should match
the 3 DoF state size for both orientation and position if the
estimator is consistent. The reported ATE and NEES are
averaged over 20 Monte Carlo runs.

TABLE II: Average ATE over 20 Gore dataset runs with
varying image noises and number of marginalized inertial
states. Time is for optimization and marginalization only (no
covariance recovery). Complete table is reported in [38].

σ N Algo. ATE (deg/m) NEES (3) Time (ms)
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cl
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e

FE
J

KEEP 0.354 / 0.118 2.713 / 2.451 21.7 ± 8.1
DROP 0.966 / 0.259 3.039 / 2.667 12.5 ± 4.6
MARG 0.930 / 0.250 3.173 / 2.661 10.9 ± 4.5

CKLAM 0.966 / 0.259 3.039 / 2.667 12.4 ± 4.5

N
o-

FE
J KEEP 2.328 / 0.407 181.7 / 26.702 18.8 ± 6.6

DROP 0.931 / 0.259 2.946 / 2.781 10.6 ± 3.3
MARG 1.007 / 0.256 3.039 / 2.502 9.2 ± 3.8

CKLAM 0.931 / 0.259 2.946 / 2.781 10.2 ± 3.1
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KEEP 0.380 / 0.132 3.057 / 2.733 8.8 ± 10.5
DROP 0.919 / 0.289 2.661 / 3.103 5.2 ± 7.0
MARG 0.816 / 0.235 2.979 / 2.619 4.3 ± 5.9

CKLAM 0.907 / 0.280 2.664 / 3.079 5.1 ± 6.8

N
o-

FE
J KEEP 2.123 / 0.376 155.3 / 22.074 8.2 ± 9.3

DROP 1.104 / 0.299 3.027 / 3.010 4.7 ± 6.0
MARG 0.879 / 0.233 3.037 / 2.476 3.9 ± 5.2

CKLAM 1.002 / 0.287 2.952 / 2.926 4.5 ± 5.8
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KEEP 0.362 / 0.129 2.733 / 2.898 4.5 ± 7.6
DROP 1.186 / 0.331 2.900 / 2.777 3.1 ± 6.2
MARG 0.844 / 0.214 3.268 / 2.196 2.4 ± 5.1

CKLAM 0.854 / 0.261 2.548 / 2.639 3.0 ± 6.0

N
o-

FE
J KEEP 1.556 / 0.295 93.6 / 14.878 4.4 ± 7.1

DROP 1.403 / 0.350 3.415 / 2.951 2.6 ± 5.1
MARG 0.812 / 0.206 3.300 / 2.216 2.2 ± 4.5

CKLAM 1.048 / 0.277 2.997 / 2.740 2.6 ± 5.1
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FE
J

KEEP 0.868 / 0.294 3.021 / 3.776 26.4 ± 9.2
DROP 1.827 / 0.542 2.909 / 2.895 14.8 ± 4.4
MARG 2.088 / 0.618 4.160 / 4.097 13.2 ± 4.7

CKLAM 1.827 / 0.542 2.909 / 2.895 14.5 ± 4.5

N
o-

FE
J KEEP 9.648 / 1.682 2226.5 / 115.1 21.6 ± 6.6

DROP 1.940 / 0.510 2.701 / 2.670 12.1 ± 3.0
MARG 3.143 / 0.657 4.504 / 3.572 10.0 ± 2.9

CKLAM 1.940 / 0.510 2.701 / 2.670 12.1 ± 2.9

We present a sliding/shifting-window optimization-based
VINS, where either the oldest or N-oldest IMU states are
marginalized at each timestep. Optimization is only per-
formed over a complete window to ensure sufficient feature
constraints (e.g., a shifting window of 3 will optimize 3 times
less than a sliding window). Features are triangulated after
they are above a minimal track length and are handled via
the four cases, see Section IV, or marginalized when their
tracking is lost.

A. Experiment 1: Validation of FEJ’s Impact

We first investigate how the different marginalization
techniques are impacted by the use of FEJ and different
shifting window sizes. The results are presented in Table II
and Figure 3. In general, it can be seen that the KEEP method
achieves significant gains in accuracy and consistency when
leveraging FEJ, while the other marginalization methods are
less sensitive to the use of FEJ. Overall, FEJ guarantees
consistency and improves performance in most cases. Thus,
we highly recommend its use.

1) KEEP: It is clear that FEJ has significant accuracy and
consistency gains over the No-FEJ method, which performed
with triple the ATE and a significantly overconfident covari-
ance. This improvement is attributed to the marginal prior



Fig. 3: Average ATE for 20 Gore dataset runs with different
algorithms (see Table II, 1 pixel noise). FEJ is denoted as
“F” (empty) and No-FEJ as “N” (shaded). Colors indices
different marginalization methods.

becoming connected to the feature states and these features
remaining tracked for long periods, leading to erroneous
information accumulation. An additional 100 run Monte
Carlo, see Figure 4, shows the inconsistent yaw quickly
diverging and directly impacting the x-y positional estimates.
Compared to other methods, it becomes evident that FEJ’ed
KEEP has the most accurate state estimation performance,
as expected since no information is dropped, at the cost
of higher computational complexity. Conversely, No-FEJ
performs even worse than sub-optimal approaches such as
MARG, DROP or CKLAM. This demonstrates the crucial
nature of consistency in optimization-based VINS.

2) DROP: It is not surprising to see that the FEJ and
No-FEJ algorithms remain consistent in general. The use
of FEJ here does show some improvement, particularly the
orientation, over No-FEJ, but since the marginal prior only
connects to the oldest state, there are only small gains. It
is interesting that as more inertial states are marginalized in
the shifting window, the performance difference between FEJ
and No-FEJ is more apparent. The DROP method has the
worst accuracy due to the significant amount of information
loss but remains extremely efficient.

3) MARG: Here again, both FEJ and No-FEJ algorithms
remain in general consistent, with good computational effi-
ciency due to the reduced state size after feature marginaliza-
tion. As investigated in the later ablation study, Section V-B,
the consistency is due to the features being marginalized and
the inertial states in the current window having a smaller
impact. It can also be seen that FEJ has slightly worse
accuracy, which can be equated to requiring all clones to use
their FEJ instead of the best estimate and thus can introduce
linearization errors. In the larger noise case, FEJ is able to
outperform the No-FEJ method.

4) CKLAM: It is clear that as more inertial states are
marginalized, the CKLAM method outperforms the DROP
method due to the more information incorporated into the
marginal prior. For the sliding window case, CKLAM has
the same performance as DROP since a single feature
observation cannot be leveraged. The use of FEJ here does

Fig. 4: IMU errors and ±3σ bounds (dashed lines) for 100
Monte Carlo runs (1-pixel noise and KEEP marginalization).
No-FEJ (top, black) and FEJ (bottom, blue).

show some improvement, particularly in the orientation, over
No-FEJ. However, the gains are small since the marginal
prior only connects to the oldest state.

B. Experiment 2: Ablation Study

Next we investigate the impact of FEJ’ing different states
and factors have on the performance and consistency of the
sliding window configuration (e.g., one state is marginalized
and thus CKLAM is not reported). Shown in Table III, the
FEJ’ing of feature states within the image factors, OF, has a
significant impact when performing KEEP marginalization,
clearly motivating the use of FEJ. As expected, both DROP
and MARG methods are not impacted by the FEJ’ing of the
features since no feature is connected to the prior and thus
are independent to FEJ. However, it is clear that FEJ’ing
of the inertial states in just the preintegration or image
factors causes erroneous information to be gained due to
the two factors having conflicting linearization points. This
observation further provides insight into why FEJ is required
to remedy the discrepancy between the marginal prior factor
and the active states.



TABLE III: Average ATE over 20 Gore dataset runs for
different combinations of FEJ’ed Jacobians. “I” denotes IMU
preintegration, CIi , cost have been changed, while “O” means
changes in the feature observations cost, Cfij . “C” indicates
the poses are FEJ’ed, while “F” means features are FEJ’ed.

Algo. Config. ATE (deg/m) NEES (3)

K
E

E
P

IC 2.309 / 0.404 181.571 / 26.491
OC 2.190 / 0.390 165.368 / 25.283
OF 0.406 / 0.122 3.098 / 2.536

OF+OC 0.384 / 0.122 3.013 / 2.655
IC+OF+OC 0.353 / 0.118 2.705 / 2.443

No-FEJ 2.304 / 0.403 178.556 / 26.335

D
R

O
P

IC 1.119 / 0.279 5.608 / 3.350
OC 1.500 / 0.346 12.668 / 5.100
OF 0.994 / 0.270 3.316 / 2.952

OF+OC 1.500 / 0.346 12.668 / 5.100
IC+OF+OC 0.967 / 0.256 3.043 / 2.624

No-FEJ 0.994 / 0.270 3.316 / 2.952

M
A

R
G

IC 1.038 / 0.258 6.610 / 3.292
OC 1.186 / 0.282 7.531 / 3.659
OF 0.947 / 0.248 3.320 / 2.590

OF+OC 1.186 / 0.282 7.534 / 3.661
IC+OF+OC 0.922 / 0.248 3.164 / 2.670

No-FEJ 0.947 / 0.248 3.320 / 2.590

Fig. 5: Timing of the different components for the sliding
window with KEEP marginalization.

C. Experiment 3: Noise Sensitivity

We now inspect the impact image measurement noise has
on FEJ. Shown in the bottom of Table II, an additional
set of sliding window Monte Carlo simulations have been
performed for 3 pixel image noise. It can be observed that
as the noise increases, the accuracy of both the No-FEJ
KEEP and DROP decreases and additional inconsistencies
arise. This degradation can be equated to higher noises
causing larger information gain in the incorrect unobservable
directions, see Eq. (16), in the No-FEJ method (this has
been seen in filter-based VINS, see Chen et al. [26]). While
FEJ can have additional linearization errors caused by higher
noises, it is clear that the impact of inconsistencies caused
by observability outweighs this by many orders of magnitude
even at high image noise.

D. Findings and Discussions

It is evident from the preceding numerical study that FEJ
exhibits impressive performance due to its ability to ensure
correct observability properties of optimization-based VINS.
Due to the partially observable nature of the visual-inertial
systems (i.e., 4 DoF unobservable), different state marginal-
ization methods have different impacts on the estimator
consistency, necessitating the proper implementation of FEJ.
Incorrect or partial implementations may introduce lineariza-

tion discrepancies, causing erroneous information gain and
degrading performance. We hope the detailed analysis and
examples provided in this paper have clarified why and how
FEJ should be realized in applicable practical systems.

When the measurement noise is high, inconsistencies
caused by the observability mismatch become more appar-
ent, and FEJ’s benefit becomes more pronounced. Among
the four primitive strategies of marginalization presented,
Section IV, we recommend leveraging a hybrid of the four
to take advantage of each. For example, KEEP to improve
accuracy with long-lived features, DROP and CKLAM to
improve efficiency, and MARG for lost features. We ad-
ditionally stress that even estimators that do not recover
covariance for computational savings (see Figure 5) will still
reap benefits from applying the FEJ methodology through
reduced estimation errors.

Based on our analysis and numerical study, the following
key takeaways should be highlighted:

• Ensuring consistency is essential to improve the accu-
racy and robustness of optimization-based VINS.

• Some marginalization methods typically used to in-
crease sparsity (e.g., DROP) happen to be able to
maintain certain levels of consistent performance due
to removing feature correlations with the marginal prior
and thus linearization discrepancies, which, however,
was not well understood in the literature.

• FEJ improves accuracy and consistency when properly
implemented by taking into account the system ob-
servability and the applied marginalization methods. It
is especially beneficial when dealing with long-lived
features or a prior map.

VI. CONCLUSION AND FUTURE WORK

This paper presents a comprehensive analysis of the ap-
plication of the First-estimates Jacobian (FEJ) methodology
within the optimization-based VINS framework. Drawing
on the fundamental observability analysis of VINS, we
demonstrate how marginalization’s fixing of state lineariza-
tion points causes erroneous gains of information, which can
be addressed by FEJ. Four different marginalization methods
commonly used in state-of-the-art optimization-based VINS
are then presented and a detailed discussion on FEJ’s applica-
tion is performed. Through a series of numerical simulations,
we investigated the estimator performance and verified the
use of FEJ to guarantee estimation consistency and in turn,
improve accuracy. We explore the impact of sensor noise
and shifting window size, and we showed that FEJ has the
largest impact when feature states become correlated with
the marginal prior (e.g., long-lived environmental features or
prior map). We close with a series of observations and recom-
mendations, emphasizing that while FEJ requires precision
during implementation, it greatly enhances optimization-
based VINS. We strongly advocate for its use.

In the future, we will investigate the application of FEJ2
[26] methodology to reduce errors caused by fixing of
linearization points, as well as explore methods to improve
the efficiency of covariance recovery.
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