

Monocular Visual-Inertial Odometry with Planar Regularities Chuchu Chen*, Patrick Geneva*, Yuxiang Peng, Woosik Lee and Guoquan Huang

Motivation & **Contribution**

- Man-made environments have rich structural information (i.e. wall, ground, table and etc.)
- Regularization constraints can represent higher-level, larger-spatial geometric information and further improve state estimation
- Contributions:
- **Monocular** filter-based VIO that enforces 3D feature structural regularities to environmental planes
- A novel **robust** plane detection and tracking
- Open sourced code and dataset for community

Plane Feature Detection and Tracking

• Sparse Point Features

- FAST detect and KLT track
- Enables temporal tracking

Point Feature Processing

- Recover 3D feature positions
- Delaunay triangulation
- Compute triangle normals
- Vertex Normals
- Avg. normals for each vertex - Reject high variances ones
- Vertex Matching Heuristics
- Pairwise match comparison
- Robustly filter outliers

Results - Detection and Tracking

• Plane feature can be tracked longer than point features • Feature tracking algorithm is efficient and robust

Table 1: Tacking statistics: number of point feature per plane, plane per frame, plane tracking length and active planes in the state per frame

Dataset	Feat. / PL	PL / Frame	Track Len.	PL Active	\mathbf{T}
table_01	27.3 ± 13.1	2.7 ± 1.1	61.1 ± 227.6	1.1 ± 0.5	3
table_02	82.0 ± 58.7	2.2 ± 1.3	49.1 ± 249.2	1.2 ± 0.6	4
table_03	33.9 ± 21.3	3.0 ± 1.2	88.5 ± 337.4	1.5 ± 0.6	4
V1_01	19.6 ± 13.3	2.9 ± 1.3	53.4 ± 74.0	0.9 ± 0.7	3
V1_02	13.7 ± 10.9	1.7 ± 1.3	20.0 ± 26.8	0.3 ± 0.5	2
V1_03	10.1 ± 9.4	0.7 ± 1.0	24.9 ± 26.0	0.0 ± 0.2	2

Plane-Aided VIO System Overview

• State Vector

$\mathbf{x}_k = \begin{bmatrix} \mathbf{x}_{I_k}^{ op} \ \mathbf{x}_C^{ op} \ \mathbf{x}_f^{ op} \ \mathbf{x}_\pi^{ op} \end{bmatrix}^{ op}$	$\mathbf{x}_{I_k} =$
$\mathbf{x}_f = \begin{bmatrix} G \mathbf{p}_{f_1}^\top \dots G \mathbf{p}_{f_g}^\top \end{bmatrix}^\top$	$\mathbf{x}_{\pi} =$

• Point-on-Plane constraints

 $z_d = \left({}^G \mathbf{p}_f^{\top G} \mathbf{n} - \right)$

• Regularity-constrained measurement

• Planar point feature update -SLAM plane + SLAM point: Standard EKF update

-SLAM plane + MSCKF point

 $\tilde{\mathbf{z}} = \mathbf{H}_T \tilde{\mathbf{x}}_C + \mathbf{H}_f \mathbf{p}_f$ -MSCKF plane + SLAM point:

-MSCKF plane + MSCKF point:

$$\tilde{\mathbf{z}} = \mathbf{H}_T \tilde{\mathbf{x}}_T + \left[\mathbf{H}_f \mathbf{F} \right]$$

RPNG ROBOT PERCEPTION & NAVIGATION GROUP

ccchu@udel.edu chuchuchen.net <u>ogeneva@udel.edu</u> pgeneva.com

Time (ms)

 8.5 ± 0.7 4.1 ± 0.9 $-.0 \pm 0.7$ 0.3 ± 0.7 2.5 ± 0.8 2.0 ± 0.7

Camera bearing meas.

$$\mathbf{z}_c = \mathbf{h}(\mathbf{x}_C, {}^G\mathbf{p}_f) + \mathbf{n}_c$$

$$\mathbf{pint}$$
: ${}^{G}\mathbf{p}_{f}$

$$\begin{bmatrix} I_k \bar{q}^\top G \mathbf{p}_{I_k}^\top G \mathbf{v}_{I_k}^\top \mathbf{b}_{g,k}^\top \mathbf{b}_{a,k}^\top \end{bmatrix}^\top$$
$$\begin{bmatrix} G \mathbf{\Pi}_1^\top \dots G \mathbf{\Pi}_h^\top \end{bmatrix}^\top$$

$$(G^{G}d) + n_d$$
 (1)

$$+ \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{\pi}^{d} \end{bmatrix}^{G} \tilde{\mathbf{\Pi}} + \begin{bmatrix} \mathbf{n}_{c} \\ n_{d} \end{bmatrix}$$
(2)
$${}^{G} \tilde{\mathbf{\Pi}} + \mathbf{n}$$
(3)

$$f + \mathbf{H}_{\pi}^{G} \tilde{\mathbf{\Pi}} + \mathbf{n}$$
 (4)

 $\tilde{\mathbf{z}} = \mathbf{H}_T \tilde{\mathbf{x}}_C + \mathbf{H}_f \tilde{\mathbf{p}}_f + \mathbf{H}_\pi \tilde{\mathbf{H}} + \mathbf{n}$ (5)

Explore Our Code and Dataset! ورجا والمعاد الكا Source Code **AR Table Dataset**

- visual points lying on each plane
- in-state and out-of-state features

Table 3: ATE on self-collected Indoor AR Table and EuRoC MAV datasets (degree / cm). $n_d = 0.01$ was used.							
Algorithm	table_01	table_02	table_03	V1_01	V1_02	V1_03	Time (ms)
M-PT	0.45 / 6.8	0.85 / 2.4	1.37 / 5.6	0.83 / 8.6	1.57 / 9.1	2.50 / 15.5	8.7 ± 1.7
M-PT & M-PL	0.52 / 6.5	0.91/2.5	1.44 / 5.9	0.82 / 8.6	1.58/9.2	2.45 / 15.3	13.3 ± 3.2
M-PT & MS-PL	0.67 / 4.6	0.72 / 2.0	0.96 / 3.0	0.75 / 7.6	1.55 / 9.0	2.50 / 15.5	13.9 ± 2.9
MS-PT	1.15 / 5.7	1.79 / 4.1	2.41 / 6.9	1.32 / 8.4	1.58 / 7.0	2.20 / 12.2	9.4 ± 2.0
MS-PT & M-PL	1.32 / 5.5	0.89/2.5	1.03 / 4.5	0.61 / 5.3	1.58 / 7.5	2.32 / 12.5	15.0 ± 3.9
MS-PT & MS-PL	1.25 / 5.1	0.65 / 2.3	1.05 / 4.6	0.75 / 6.9	1.55 / 6.9	2.41 / 12.5	14.7 ± 3.2
VINS-Fusion [2]	1.62 / 5.8	1.32/3.0	1.47 / 7.6	1.24 / 5.8	2.61 / 11.5	3.61 / 20.5	$35.6 \pm 17.0*$
OKVIS [3]	2.48 / 9.0	2.01 / 7.7	3.94 / 15.3	0.72 / 8.3	2.01 / 14.5	10.47 / 107.4	$85.5 \pm 32.6*$

* Timing for VINS-Fusion [2] and OKVIS [3] *only* reports their optimization time (no feature tracking).

[1] P. Geneva et al. "OpenVINS: A Research Platform for Visual-Inertial Estimation", ICRA, 2020. https: //github.com/rpng/open_vins [2] Qin et al. "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator", TRO, 2018. [3] Leutenegger et al. "Keyframe-Based Visual-Inertial SLAM using Nonlinear Optimization", RSS, 2013.

Monte-Carlo Simulation

Table 2: Average 20 run RPE and NEES for different algorithm configurations. Units are in degree / cm

	Algorithm	60m	80m	100m	120m	NEES(3)
	M-PT	0.37 / 4.3	0.44 / 5.0	0.50 / 5.6	0.55 / 6.2	3.39 / 1.75
	M-PT & M-PL	0.37 / 4.3	0.43 / 4.9	0.48 / 5.5	0.53 / 6.1	3.34 / 1.72
	M-PT & MS-PL	0.36 / 3.6	0.42 / 4.1	0.48 / 4.6	0.53 / 5.1	3.99 / 1.44
Ē	MS-PT	0.30/3.6	0.35 / 4.1	0.40 / 4.6	0.43 / 5.1	3.45 / 1.63
y	MS-PT & M-PL	0.29/3.5	0.33 / 4 .0	0.37 / 4.5	0.41 / 4.9	3.09 / 1.44
	MS-PT & MS-PL	0.29 / 2.9	0.35 / 3.3	0.39 / 3.7	0.42 / 4.1	3.38 / 1.20

• M: MSCKF features, S: SLAM features, PT: point, PL: plane. •Extend OpenVINS [1] simulator to generate room walls and

• Planar regularities **improve** state estimation and constrain both

Real-World Experiments

• Tested on released Indoor AR Table and EuRoC MAV datasets • Planar regularities improve state estimation performance

• Plane detection and tracking is robust and efficient, tracking planes for significant periods of time

• The system is computationally cheap and efficient