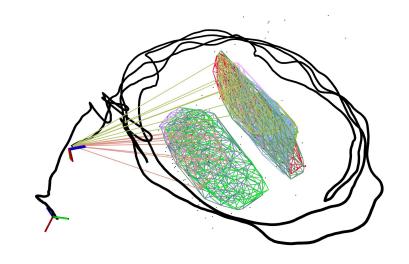
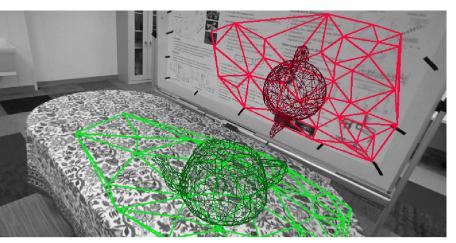
Monocular Visual-Inertial Odometry with Planar Regularities

Chuchu Chen*, Patrick Geneva*, Yuxiang Peng, Woosik Lee, and Guoquan Huang

Robot Perception and Navigation Group (RPNG)
University of Delaware, USA




Introduction

- Man-made environments provide rich structural information (e.g. planes...)
- Estimation of planes enables scene understanding (e.g. AR / VR)
- Constraining 3D features to planes through point-on-plane regularization can improve efficiency (reduce state)

Key Contributions:

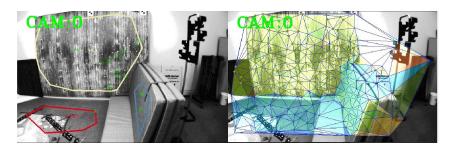
- Novel plane detection and tracking with only a monocular camera
- Efficient filter-based VIO with planar regularities
- Open sourced code and dataset

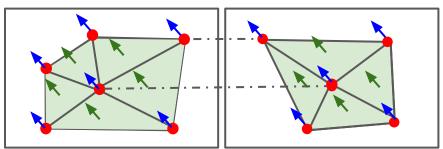
Monocular Plane Feature Detection and Tracking

Sparse Point Features:

- FAST detection
- KLT provides frame-to-frame tracking

Point Feature Meshing

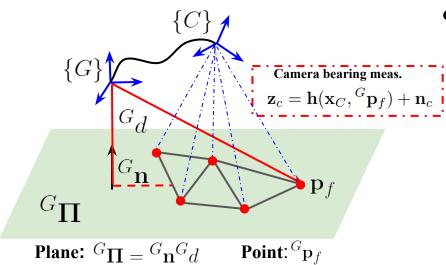

- 3D point feature recovery
- 2D mesh (Delaunay triangulation)
- Compute normals of triangles


Vertex Normals:

- Use neighboring triangles normals to compute avg. vertex normals
- Remove invalidate vertices with high variance (points on the edge)

Vertex Matching Heuristics

- Pairwise comparison with neighbors
- Normal difference, point-to-plane distance, statistical filter to remove outlier



Shown efficient and robust from real-world experiments

(e.g. ~3-4 ms on EuRoC Mav)

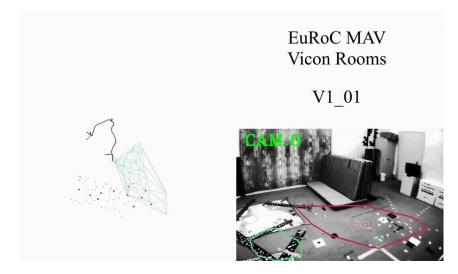
Planar Regularities

• Stack linearized bearing \mathbf{z}_c and regularity measurements z_d

$$\begin{bmatrix} \tilde{\mathbf{z}}_c \\ \tilde{\mathbf{z}}_d \end{bmatrix} = \begin{bmatrix} \mathbf{H}_T^c \\ \mathbf{0} \end{bmatrix} \tilde{\mathbf{x}}_C + \begin{bmatrix} \mathbf{H}_f^c \\ \mathbf{H}_f^d \end{bmatrix} {}^G \tilde{\mathbf{p}}_f + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_\pi^d \end{bmatrix} {}^G \tilde{\mathbf{\Pi}} + \begin{bmatrix} \mathbf{n}_c \\ n_d \end{bmatrix}$$

$$\Rightarrow \tilde{\mathbf{z}} = \mathbf{H}_T \tilde{\mathbf{x}}_C + \mathbf{H}_f {}^G \tilde{\mathbf{p}}_f + \mathbf{H}_\pi {}^G \tilde{\mathbf{\Pi}} + \mathbf{n}$$

- MSCKF and SLAM feature updates to balance accuracy and efficiency
- Planar regularities can constrain both in-state and out-of-state features


Point-on-plane regularity $G \perp G \cap G$

$$z_d = ({}^{G}\mathbf{p}_f^{\top G}\mathbf{n} - {}^{G}d) + n_d$$

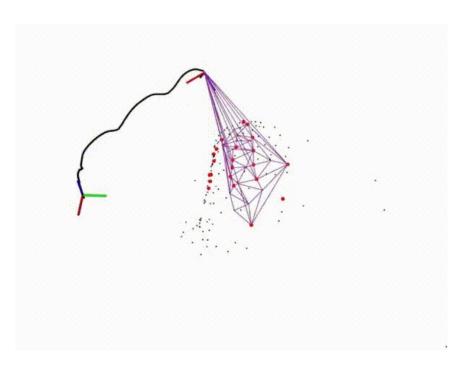
SLAM planes shown impressive performance by providing **long-term** tracking and regularization

Experimental Results: Detection and tracking

- Planes can be tracked much longer than points to better constrain the motion
- Efficient to include planes
 without an additional sensor

Dataset	Feat. / PL	PL / Frame	Track Len.	PL Active	Time (ms)
V1_01	19.6 ± 13.3	2.9 ± 1.3	53.4 ± 74.0	0.9 ± 0.7	3.3 ± 0.7
V1_03	10.1 ± 9.4	0.7 ± 1.0	24.9 ± 26.0	0.0 ± 0.2	2.0 ± 0.7
table_01	27.3 ± 13.1	2.7 ± 1.1	61.1 ± 227.6	1.1 ± 0.5	3.5 ± 0.7
table_02	82.0 ± 58.7	2.2 ± 1.3	49.1 ± 249.2	1.2 ± 0.6	4.1 ± 0.9
table_03	33.9 ± 21.3	3.0 ± 1.2	88.5 ± 337.4	1.5 ± 0.6	4.0 ± 0.7

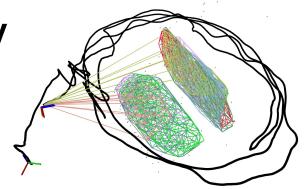
Efficient plane detection and tracking performance!

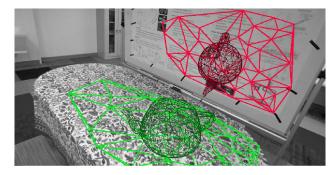


Experimental Results

Table 2: Real-world AR Table Dataset (degree / cm)

Algorithm	table_01	table_02	table_03	table_04	Time (ms)
M-PT	0.45 / 6.8	0.85 / 2.4	1.37 / 5.6	0.83 / 7.5	8.7 ± 1.7
M-PT & M-PL	0.52 / 6.5	0.91 / 2.5	1.44 / 5.9	0.87 / 7.1	13.3 ± 3.2
M-PT & MS-PL	0.67 / 4.6	0.72 / 2.0	0.96 / 3.0	0.75 / 3.2	13.9 ± 2.9
MS-PT	1.15 / 5.7	1.79 / 4.1	2.41 / 6.9	1.28 / 5.7	9.4 ± 2.0
MS-PT & M-PL	1.32 / 5.5	0.89 / 2.5	1.03 / 4.5	1.10 / 4.7	15.0 ± 3.9
MS-PT & MS-PL	1.25 / 5.1	0.65 / 2.3	1.05 / 4.6	0.79 / 5.0	14.7 ± 3.2
VINS-Fusion [1]	1.62 / 5.8	1.32 / 3.0	1.47 / 7.6	1.75 / 5.6	$35.6 \pm 17.0 *$
OKVIS [2]	2.48 / 9.0	2.01 / 7.7	3.94 / 15.3	2.05 / 16.2	$85.5 \pm 32.6*$


- Including planes improves VIO accuracy!
- **Efficient** performance
- Outperform state-of-the-art point-based systems



Monocular Visual-Inertial Odometry with Planar Regularities

Chuchu Chen*, Patrick Geneva*, Yuxiang Peng, Woosik Lee, and Guoquan Huang

- Novel plane detection and tracking on monocular camera
- Efficient filter-based VIO with planar regularities to improve accuracy
- Open sourced code and dataset

ccchu@udel.edu chuchuchen.net

Source Code

AR Table Dataset