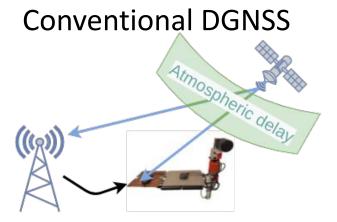
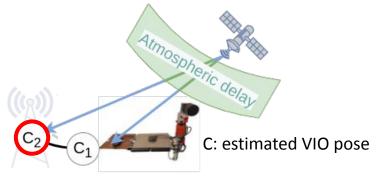
Tightly-coupled GNSS-aided Visual-Inertial Localization

Woosik Lee, Patrick Geneva, Yulin Yang, and Guoquan Huang Robot Perception and Navigation Group (RPNG) University of Delaware, USA



Single-Sensor-Based Differential GNSS

- GNSS fusion with VIO: Globally accurate and locally precise localization
- Differential-GNSS: More accurate than single GNSS solution

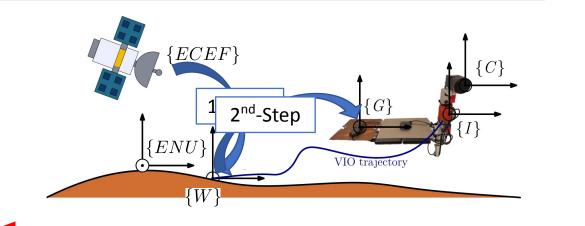


Remove atmospheric error by comparing: signals from two different GNSS sensors

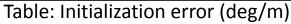
Drawbacks of conventional:

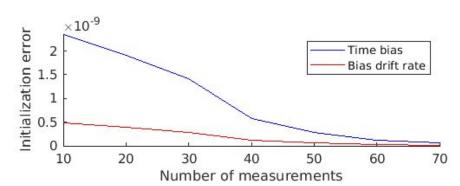
- Requires 2 or more GNSS sensors
- Requires stable communication
- Limited range from base (< 10km)

Single-sensor-based DGNSS


Remove atmospheric error by comparing: **sequential** signals of the same GNSS sensor

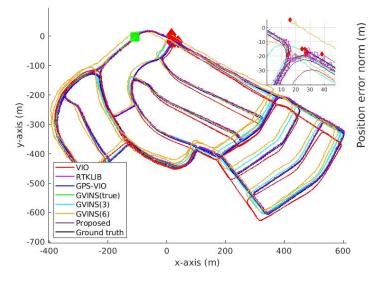
Advantages of proposed system:

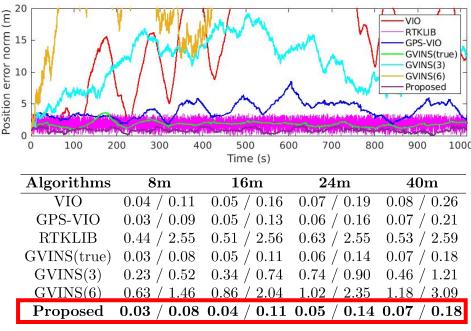

- Single GNSS sensor mounted on robot
- No communication or distance issue
- Equivalent to have base right next to robot
- **Raw GNSS** (pseudorange, carrier, doppler) model
- No need to model atmospheric error


2-Step GNSS Initialization

- Oth-Step: Information Collection
 - GNSS measurements
 - VIO poses
- 1st-Step: ECEF-to-World frame
 - Linear least-squares with quadratic constraint problem
 - Better with longer trajectory
 - Better with smaller GNSS noise
- 2nd-Step: GNSS sensor parameters
 - Sensor time bias, time bias drift rate
 - Linear least-squares problem
 - Better with larger # of measurements

$\overline{\operatorname{\mathbf{dist}}ackslash\sigma}$	0.1m	0.5m	1m	2m	5m
$5\mathrm{m}$	1.57 / 0.58	6.25 / 2.91	14.52 / 6.79	30.66 / 71.75	69.26 / 88.42
$10 \mathrm{m}$	$1.31 \ / \ 0.52$	5.54 / 2.19	$9.45 \ / \ 4.17$	20.41 / 44.94	47.45 / 94.93
$20\mathrm{m}$	$0.79 \ / \ 0.27$	$2.47 \ / \ 0.99$	4.84 / 2.01	10.24 / 4.10	26.96 / 51.54
$50\mathrm{m}$	0.53 / 0.07	0.80 / 0.16	$0.97 \ / \ 0.27$	$1.79 \ / \ 0.62$	4.86 / 1.48
100m	$0.45 \ / \ 0.09$	0.49 / 0.06	$0.50 \ / \ 0.12$	$0.78 \ / \ 0.24$	$2.11 \ / \ 0.65$





Simulation Results: Localization & Calibration

Localization

- Robust to GNSS atmospheric errors
- Accurate GNSS measurement model
- Accurate Localization

Calibration

- Spatiotemporal calibration
- Initial error converge to 0
- Consistent calibration

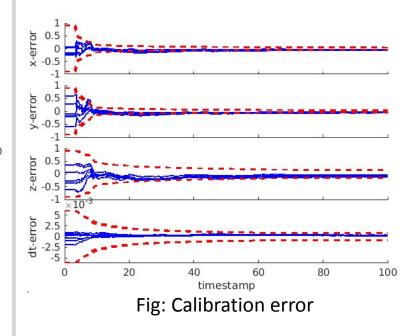
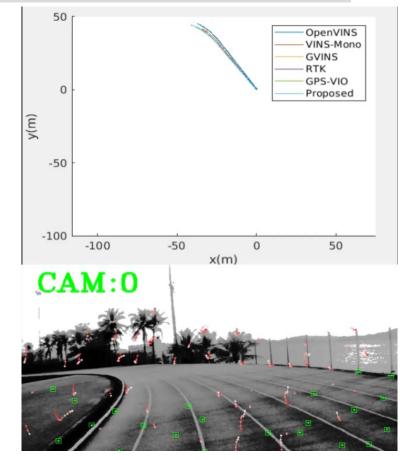


Table: Localization error (RPE, deg/m)


Conclusion

- Proposed Work
 - Raw GNSS measurement fusion with VIO
 - Single-sensor-based DGNSS modeling
 - Robust and efficient GNSS initialization
 - GNSS atmospheric error-robust global localization

Woosik Lee

WoosikLee.com woosik@udel.edu

Real-World

Root Mean Squared Error (RMSE)

Proposed	GVINS	GPS-VIO
0.319	0.327	0.374