iCalib: Inertial Aided Multi-Sensor Calibration

Yulin Yang¹, Woosik Lee¹, Philip Osteen², Patrick Geneva¹, Xingxing Zuo³ and Guoquan Huang¹

¹Robot Perception and Navigation Group (RPNG), University of Delaware
²DEVCOM Army Research Laboratory (ARL), Adelphi, MD, USA
³Institute of Cyber-System and Control, Zhejiang University

Introduction

- Autonomous robots are equipped with multi-heterogeneous sensors.
 - IMU, Camera, LiDAR, Wheel encoder
- Multi-sensors can provide more comprehensive perception capabilities.
 - High frequency pose estimation from IMU and wheel encoder
 - > Texture rich images from cameras, sparse point clouds from LiDAR
- Spatial-temporal calibration are essential for multi-modal perception.

Related works

NIVERSITYOF

iCalib can calibrate all spatial-temporal params for all sensors.

Contributions

- iCalib: an inertial aided multi-sensor calibration system
 - > Asynchronous IMU, multi-cameras, LiDAR and wheel encoder.
 - Degenerate motion identification for multi-sensor calibration

Kinematics or bounding poses interpolation to fuse sensor measurements.

Camera pixels, LiDAR plane point clouds, 2D wheel integration

Optimization Graph

- Inertial information to build the pose backbone for the graph.
 - > Integrate base IMU at CAM frequency for base VI graph.
 - > Additional cameras and LiDAR measures added to base VI graph.
 - > Calibration are added when each edge is inserted.

State Vector

IMU state:

≻

Historical IMU poses, features and calibration:

 $\mathbf{x}_{I_k} = \begin{bmatrix} G & \bar{q}^\top & G \mathbf{p}_{I_k}^\top & G \mathbf{v}_{I_k}^\top & \mathbf{b}_{\omega_k}^\top & \mathbf{b}_{a_k}^\top \end{bmatrix}^\top$

Handle Asynchronous Sensors

- Why interpolation?
 - Fuse asynchronous measures
 - Approximation in small interval
 - > Linear model with constant velocity

Rotation: ${}^{G}_{I_{s}}\mathbf{R} = {}^{G}_{I_{0}}\mathbf{R} \ \mathbf{Exp}(\boldsymbol{\omega} \cdot \Delta t)$ Position: ${}^{G}\mathbf{p}_{I_{s}} = {}^{G}\mathbf{p}_{I_{0}} + \mathbf{\nabla} \cdot \Delta t$

- How to define constant velocity?
 - Bounding pose based interpolation
 - Kinematics based interpolation

• Optimize the state with sensor costs:

$$\min_{\mathbf{x}} \sum \mathbb{C}_I + \sum \mathbb{C}_C + \sum \mathbb{C}_L + \sum \mathbb{C}_W$$

IMU: pre-integration cost based on ACI²[Yang2020ICRA]:

 $\mathbb{C}_{I_{k+1}} \triangleq \|\mathbf{z}_{I_{k+1}} - \mathbf{h}_{I}(\mathbf{x}_{I_{k}}, \mathbf{x}_{k+1})\|_{\mathbf{Q}_{I_{k+1}}}^{2}$

> CAM: image projection cost[Geneva2020ICRA]:

 $\mathbb{C}_{C} \triangleq \|\mathbf{z}_{C} - \mathbf{h}_{C}(_{I_{in}}^{G}\mathbf{R}, {}^{G}\mathbf{p}_{I_{in}}, \mathbf{x}_{CI}, {}^{G}\mathbf{p}_{f})\|_{\mathbf{Q}_{C}^{-1}}^{2}$

LiDAR: point-to-plane cost from LIC-Fusion 2.0[zuo2020IROS]:

$$\mathbb{C}_{L} \triangleq \|\mathbf{z}_{L} - \mathbf{h}_{L}(_{I_{in}}^{G}\mathbf{R}, {}^{G}\mathbf{p}_{I_{in}}, \mathbf{x}_{LI}, {}^{G}\mathbf{p}_{\pi}, \mathbf{0})\|_{\mathbf{Q}_{L}^{-1}}^{2}$$

> Wheel : 2D odometer integration cost from VIWO[Lee2020IROS]:

$$\mathbb{C}_{W} \triangleq \|\mathbf{z}_{W} - \mathbf{h}_{W}(\mathbf{x}_{I_{in,k}}, \mathbf{x}_{I_{in,k+1}}, \mathbf{x}_{WI})\|_{\mathbf{Q}_{W}^{-1}}^{2}$$

Simulation - Setup

- □ 1 IMU + 3 CAM + 1 LiDAR + 1 Wheel encoder
- Structural environment
- a 3D motion and 2D planar motion
- All spatial-temporal calibration
- All camera intrinsic parameters

Parameter	Value	Parameter	Value
IMU Freq. (hz)	300	Max Cam Pts	100
Cam Freq. (hz)	20/10/10	Cam Time offset (ms)	10/-10/0
LiDAR Freq. (hz)	8	LiDAR Time offset (ms)	-10
Wheel Freq. (hz)	70	Wheel Time offset (ms)	0
LiDAR Rings	16	LiDAR Range Noise (m)	0.03
Pixel Proj. (px)	1	Wheel. White Noise	0.03

Simulation - Results

a 3D motion: all calibration converge nicely!

NIVERSITY OF

2D planar motion is degenerate for calibration!

IMU-Wheel

Real World Experiments

JIVERSITY OF

- 3 sets of experiments with Jackal
 - > 1 IMU + 3 cams
 - > 1 IMU + 1 cam + 1 LiDAR
 - > 1 IMU + 1 cam + 1 wheel

- IMU + 3 cameras
 - Kalibr results as for comparison
 - > 4 datasets are tested!
 - > Spatial-temporal converges!

- IMU + CAM + LiDAR
- 4 datasets are tested ⊳
- MSG-CAL for comparison ≻
- **IMU-LiDAR** converges ≻

NIVERSITY WARF

time step

IMU + CAM + Wheel

- 4 datasets are tested ≻
- IMU-Wheel converges slower ≻
- Improvement is needed. ≻

Calibration under constrained motion should be improved!

time step

(s)

1000 2000 3000

time step

Latest Breakthrough Results

- Multi-visual-inertial calibration (MVIS)
 - > Multi-asynchronous IMUs
 - All IMU spatial-temporal and intrinsics calibrated

-0.02

dw6 dw5 dw4 dw3 dw3 dw3 dw3 dw3 dw3 dws dws dw4 dw4 dw3 dw3 dw3 dw3

Degenerate motions identified

Acc. Calib **Gyro Calib** VI Gyro Dw IMUa Dw 0.004 0.03 0.02 0.02 0.02 0.002 0.01 0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.002 -0.03 -0.03 -0.03 T265 IMUa Da T265 IMUb Dw T265 IMUa Dw 0.002

Sensor	Extrinsics	Temporal	Intrinsics	Qty
Base IMU	_	_	X	1
Aux IMU	X	X	X	≥ 1
Aux Gyro	X	X	X	≥ 1
Camera	X	X	X	≥ 1

Summary

- > iCalib: multi-sensor calibration
- > Degenerate motion analysis

Spatial

X

X

X

X

X

Extensive simulations to verify consistency

NIVERSITYOF

Status

Done

Done

Done

Done

Done

To improve

Real world experiments on ground vehicles

Temporal

Χ

X

X

X

X

Intrinsic

 \overline{X}

Χ

X

X

Qty.

 ≥ 1 ≥ 1

 ≥ 1

• Future Works

Sensor

Base IMU

Aux IMU

Aux Gyro

Camera

Lidar

Wheel

- Calibration under constrained motions
- > Improve the wheel calibration
- Continuous time formulation

Yulin Yang yuyang@udel.edu https://yangyulin.net

