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Abstract: Autonomous navigation technology is used in various applications, such as agricultural
robots and autonomous vehicles. The key technology for autonomous navigation is ego-motion
estimation, which uses various sensors. Wheel encoders and global navigation satellite systems
(GNSSs) are widely used in localization for autonomous vehicles, and there are a few quantitative
strategies for handling the information obtained through their sensors. In many cases, the modeling of
uncertainty and sensor fusion depends on the experience of the researchers. In this study, we address
the problem of quantitatively modeling uncertainty in the accumulated GNSS and in wheel encoder
data accumulated in anonymous urban environments, collected using vehicles. We also address
the problem of utilizing that data in ego-motion estimation. There are seven factors that determine
the magnitude of the uncertainty of a GNSS sensor. Because it is impossible to measure each of
these factors, in this study, the uncertainty of the GNSS sensor is expressed through three variables,
and the exact uncertainty is calculated. Using the proposed method, the uncertainty of the sensor is
quantitatively modeled and robust localization is performed in a real environment. The approach is
validated through experiments in urban environments.
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1. Introduction

Recently, autonomous navigation technology has been used in various applications, such as
agricultural robots, autonomous vehicles, and drones [1,2]. Various types of sensors are used to estimate
position, for example, wheel encoders, global navigation satellite systems (GNSSs), inertial measurement
units, cameras, and light detection and ranging (LiDAR). Among these sensors, wheel encoders and
GNSS are the most widely used in autonomous navigation systems. Thus, constructing a precise
model for wheel encoders and GNSSs can improve localization accuracy for autonomous vehicles.
The models should be designed to consider both systematic and non-systematic errors.

The observation model and observation noise, which are parameters for modeling GNSSs, should
consider systematic and non-systematic errors. Conventionally, systematic errors of the GNSS are
not considered [3]; thus, the observation model is set as an identity element. The factors affecting
non-systematic errors are ionospheric effects, tropospheric effects, ephemeris error, satellite clock error,
multipath effects, and foliage attenuation. The effect of each factor is determined by the environment [4].
Thus, the observation noise should be set to effectively reflect these non-systematic errors. A typical
method for establishing observation noise is to use the uncertainty information provided by sensors,
and many studies have employed this information for localization [5–7]. However, both the actual
positioning error and the error provided by the sensors are highly dependent on the performance of the
GNSS sensor. Nevertheless, there are additional methods, such as applying neural networks. Afifi and
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El-Rabbany [8] proposed using the International GNSS Service-Multi-GNSS Experiment (IGS-MGEX)
network to correct for satellite differential code biases and the orbital and satellite clock errors.

Thrapp, Westbrook, and Subramanian [9] proposed a method for determining the observation
noise using the number of satellites. However, this method does not reflect individual non-systematic
errors. Depending on the type of GNSS sensor, the area used, and the environmental conditions,
the actual error and observation noise may not match. Wu, Jin, and Xia [10] proposed a GNSS sensor
model that uses GNSS multipath errors, which vary depending on vegetation moisture content or the
scatter size (stem or leaf) in a forest environment. Maier and Kleiner [11] and Taylor, Li, Brunsdon,
and Ware [12] proposed a method for computing the uncertainty of the GNSS sensor, called the
multipath effect. This method is based on calculating the uncertainty of the GNSS sensor for only those
satellites with a signal path that is not obstructed. Although the method reduces the multipath effect
and foliage attenuation, determination of the uncertainties of the remaining elements depends on the
performance of the GNSS sensor.

This study proposes using three variables to represent the seven non-systematic errors by
categorizing the errors based on their characteristics. Of these three variables, two are determined via
preliminary measurements, while the third variable is obtained by mapping according to the actual
sensor error. This method can compute the observation noise independent of the performance of the
sensor. Additionally, it is possible to construct a practical GNSS sensor model with a precision close to
that of the sensors in urban environments. The main contribution of this study is applicable in most
cases because it is the existing GNSS sensor that provides the magnitude of the uncertainty. However,
in urban environments with many tall buildings, the multipath effect does not provide an accurate
measure of the uncertainty. Therefore, this study models the uncertainty size of the GNSS sensor by
measuring factors that contribute to its size. There are seven factors that determine the magnitude of
the uncertainty of a GNSS sensor. Because it is impossible to measure each of these factors, in this study,
the uncertainty of the GNSS sensor is expressed through three variables, and the exact uncertainty
is calculated.

2. Integration of Odometry and GNSS

The improved odometry error model considers systematic and non-systematic errors. This section
describes the systematic error of the odometry by straight and circular driving, and proposes a
covariance matrix for non-systematic error modeling.

2.1. Extended Kalman Filter (EKF)

The EKF allows the estimation of the state of a dynamic system given a sequence of observations
and a control input. Observations originating from different sensors are typically combined to obtain a
robust estimate of the state. Conventionally, the extended Kalman filter can be expressed as follows:

xt = g(ut−1, xt−1) + εt (1)

zt = h(xt) + δt (2)

where xt is the state, ut is the control vector, and zt is the observation at time t. Here, g and h are the
transition functions of state and observation, εt and δt are zero-mean Gaussian noise variables with
covariance Qt and Rt, and the EKF implements a linearization of g and h around the pose estimation
computed in the previous time step t− 1. Please refer to [13] for a more detailed description.

2.2. The Conventional Odometry Motion Model

The control input model widely used in mobile robots is the odometry motion model. Two types
of errors affect the accuracy of this odometry motion model. The first is a systematic error, which is a
constant error that can be reduced by calibration. The second is a non-systematic error, where random
errors occur, and the error can be reduced through statistical methods. Therefore, in this study, methods
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for reducing the systematic error and the non-systematic error of the existing odometry motion model
are applied to an actual vehicle.

Jung [14] proposed a method that uses an oval track to accurately calibrate the odometry motion
model based on the vehicle structure. For calibration, Jung suggests that the systematic errors comprise
two representative variables: the wheelbase and the wheel diameter. Jung showed that the control
input model can be effectively calibrated using the two representative variables by driving along the
proposed oval track. However, the oval track includes both curved and straight paths. To perform
control input model calibration experiments on this type of track, the vehicle must be modified to be
controllable, with a very accurate steering angle control. Hence, it is difficult to apply this method to
real vehicles.

2.3. Improved Odometry Motion Model for Vehicles

In this study, we propose a method for dividing the oval track into a straight track and a circular
track, calculating the wheelbase and the wheel diameter of the vehicle by driving on the two tracks
and calibrating the control input model simply. Because only one steering angle should be maintained
on each track, control of the steering angle can be simplified, and no control modification is required.

First, the wheel diameter error of the vehicle is calibrated by driving on a straight track. For a
vehicle, driving straight is possible if the steering angle is maintained at zero. As indicated in Figure 1
by the black line, the actual travel distance of each rear wheel is the same as the actual travel distance
of the car. However, if the diameters of the rear wheels are different, the measured distance on the
odometer differs from the actual travel distance, as indicated in Figure 1 by the blue dotted line. If the
actual travel distance L is known, both wheel diameters can be calibrated using a method from as:

D(l,r) =
Lc(l,r)
πn(l,r)

(3)

where L is the actual travel distance of the car, D(l,r) is the actual left or right rear wheel diameter,
n(l,r) is the estimated number of encoder pulses, and c(l,r) is the number of pulses per revolution of
the encoders.
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Secondly, the wheelbase error of the vehicle is calibrated by driving along the circular track. If a
constant steering angle is maintained, the car can follow a circular path with a radius of ρact, as shown
in Figure 2, and the vehicle can return to its starting position. In this case, the measured odometry path
appears as a blue path with a heading error of α and a radius ρodo. Using the formula for obtaining
the heading angle from the encoder measurement pulse, the vehicle wheel track, bcal, can be obtained,
as shown in the following Equation (4):

bcal = bnom
(2π+ α)

2π
(4)

where bcal and bnom are the wheelbase after and before calibration, respectively.
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Finally, we model the process noise of the vehicle odometry. Assuming the movements of both
rear wheels are independent of each other, and the variance of the error is proportional to the travel
distance, the non-systematic error covariance of the odometry can be set as follows [15]:

Σut =

 σ2
r,t 0
0 σ2

l,t

 =  (kr ∆sr,t)
2 0

0 (kl ∆sl,t)
2

 (5)

where Σut is the non-systematic error covariance of the odometry, ∆sl and ∆sr are the motion increments
of the right and left wheels, and kl and kr are the non-systematic parameters of the travel distance
of the right and left wheels, respectively. To calculate Σut , we measure ∆sl and ∆sr using the wheel
encoder and set kl and kr. We propose a method for determining kl and kr values using a straight track
and circular track. First, the systematic error is removed using the control input model calibration,
and the standard deviation of each wheel is calculated with a repetition of each straight and circular
track. For localization stability, we use kl and kr as the larger values of standard deviation calculated
from the straight and circular tracks. Using kl and kr, we can calculate Σut as the non-systematic error
covariance and set the process noise. In actual vehicles, the movement of both wheels is independent
due to the differential gear, therefore, it is applied to the extended Kalman filter through the equation
used in the motion model for the two-wheeled robot. The detailed equation of the motion model is as
follows [15].

pt+1 = g(x, y, θ, ∆sr, ∆sl) =


x + ∆s

2 cos (θ+ ∆θ
2 )

y + ∆s
2 sin (θ+ ∆θ

2 )

∆θ

 (6)

Σpt+1 = ∇pt g·Σpt ·∇pt g
T +∇∆rlg·Σut ·∇∆rlg

T (7)

where pt represents the position at time t and is calculated as in Equation (6). Here, Σpt is the covariance
of the motion model at time t and is calculated as shown in Equation (7) using the propagation of
the error.

Therefore, using the proposed straight and circular tracks, it is possible to set the control input
model and process noise of the odometry using the encoder installed in the actual car, and consequently,
the odometry motion model can be constructed practically.

3. Improved GNSS Sensor Model

The GNSS sensor model is the zt = h(xt) + δt portion of Equation (2). The observation noise
δt should be specified. To match the observation noise to the actual operating characteristics of the
GNSS sensor, non-systematic errors should be considered without using the uncertainty information
provided by the sensor.
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The factors affecting the non-systematic errors of the GNSS sensor are the delusion of precision
(DOP) and ranging errors [4]. Ranging errors can be further classified into receiver noise, ionospheric
effects, atmospheric effects, ephemeris errors, satellite clock errors, multipath effects, and foliage
attenuation. The uncertainty of the GNSS sensor is calculated as follows [4]:

σG = DOP×
√
σI2 + σT2 + σE2 + σS2 + σM2 + σF2 + σR2 (8)

where σG represents the uncertainty of the GNSS sensor; σI, σT, σE, σS, σM, σF, and σR represent
the magnitudes of uncertainty due to ionosphere influences, atmospheric effects, ephemeris errors,
satellite clock errors, receiver error, multipath effects, and foliage attenuation, respectively. The DOP
is not related to the position estimation performance of the GNSS sensor because it is determined
by the geometrical arrangement of the satellite. Therefore, the DOP received by the GNSS sensor is
not significantly different from the actual DOP. In contrast, the seven error factors included in the
ranging errors are directly related to the position estimation performance of the GNSS sensor. Thus,
if the uncertainty of each factor can be accurately measured, the observation noise can be accurately
calculated based on the characteristics of the GNSS sensor. However, measuring the uncertainty of the
seven error factors is impractical with regard to system construction cost and efficiency.

Therefore, we propose a method for constructing the GNSS sensor model by expressing the seven
error factors as three representative variables and setting the observation noise by calculating the value
of each representative variable through three experiments.

We represent the seven error factors with three representative variables based on the characteristics
of each error: receiver error (RE), atmospheric effect and satellite-oriented error (ASE), and local
characteristic error (LCE). The relationship between each representative variable and the error factors
is as follows:

RE = σR (9)

ASE (model) =
√
σI2 + σT2 + σE2 + σs2 (10)

LCE (position) =
√
σM2 + σF2 (11)

The RE depends on uncertainty due to receiver noise. ASE depends on ionospheric influence,
atmospheric effect, ephemeris error, and uncertainty due to satellite clock error. These four error factors
are characterized by the magnitude of the uncertainty, which can be determined using the calibration
model used in the measurement of the GNSS sensor. Notably, the real-time kinematic (RTK) reduces
the ASE to a negligible value [5]. Therefore, in this study, the square root of the sum of squares of
these four errors is expressed as ASE (model), based on the type of calibration model. Finally, the LCE
represents the sum of uncertainties due to multipath effects and foliage attenuation. Because these two
error factors are heavily influenced by the measurement environment, modeling is difficult. Therefore,
in this study, the LCE (position) is constructed by mapping the sum of the uncertainties from the two
factors based on the measurement location and creating a local characteristic error map. Equations
(9)–(11) are combined with Equation (12) when defining the relationship between the uncertainty of
the GNSS sensor and the three representative variables.

σG = DOP×
√

ASE(state)2 + LCE(position)2 + RE2 (12)

The experimental method for measuring each variable is as follows: First, the RE is calculated
from measurements in an environment where the ASE and LCE are assumed to be zero. When the
RTK solution is used as a calibration model, the ASE is assumed to be 0 [16]. The LCE is assumed to be
0 if the measurement environment is the roof of a building or an open space where multipath effect
and foliage attenuation do not occur. Then, σG is calculated from the measurement from the fixed
GNSS sensor at a certain time. The DOP uses the value provided by the sensor. We calculate the RE
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value using Equation (9). Second, we measure the ASE value in an environment where the LCE value
is assumed to be 0. Here, σG and the DOP are measured from a fixed position relative to the GNSS
sensor, as in the previous experiment. The ASE is calculated via Equation (12) using the measured σG
and DOP and the pre-calculated RE value obtained using calibration models. Third, the LCE values
are measured using the pre-computed RE and ASE values in an environment where the GNSS sensor
model is to be applied. The variable LCE is calculated through repeated driving, and the calculated
LCE value is stored by dividing the area by a certain distance. Details are given in Section 4.3.3. The σG
value is calculated by repeatedly measuring the same environment. By using the measured DOP and
pre-calculated RE and ASE values, the local characteristic error map is generated using the LCE values
measured for each region via Equation (12). The measured GNSS sensor data is presented in Cartesian
coordinates using the WGS84 method. The detailed equation of the GNSS sensor model is as follows.

Rt =

[
σ′Gt 0

0 σ′Gt

]
(13)

where the σ′G calculated by substituting ASE, LCE, and RE variables into Equation (12) is used to
update the position.

The advantage of this method is that it reduces the number of experiments needed to construct
a GNSS sensor model. Furthermore, the uncertainty of the position measurement can be calculated
without using the uncertainty provided by the GNSS sensor. Thus, the GNSS sensor model can be
accurately constructed.

4. Experimental Results

4.1. Experimental Setup

Figure 3 shows the car platform used in this study. The platform is based on a Santa Fe DM 2.0
2WD. An Autonics E40HB wheel encoder was installed on both sides of the rear wheel. A GNSS
(NovAtel Propak-V3) was mounted on the roof of the vehicle above the center of the rear axle of the
car. Furthermore, a laser rangefinder (SICK LMS111) was installed on the front of the vehicle with a
vertical orientation to the ground. We used the scan data measured by the laser rangefinder to estimate
the vehicle position and as ground truth data.
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4.2. Motion Model Construction

To construct the wheel odometry motion model, the experimental environment was set to reflect
an actual road. We obtained the ground truth of the vehicle using a NovAtel Propak-V3, with the
calibration model as the RTK. In the experiment, ground truth precision was 0.02 m (1σ).

4.2.1. Calibration of Wheel Diameter Through Straight Driving

A straight driving test was performed in a parking lot to calibrate the wheel diameter error of
the car. The straight driving test was performed 10 times along a 50 m straight path (L), as shown
in Figure 4. To minimize the effect of non-systematic errors caused by vehicle dynamics, the vehicle
was driven at a speed of ≤30 km/h. Dr and Dl were the encoder measurements from each wheel.
The calibrated diameters were calculated to be Dr = 721.6 mm and Dl = 722.3 mm from the mean value
of the results obtained after 10 runs.

Figure 4 shows the error of the 50 m straight driving test before and after calibration of the wheel
diameter error. The red and green symbols represent the odometry error before and after calibration,
respectively. After utilizing this calibration technique, the odometry error was reduced. The average
final position error after calibration was 0.077 m, which is approximately 10.9 times better than the
final position error before calibration (0.841 m). Thus, Dr and Dl were properly calibrated using the
proposed scheme.
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4.2.2. Wheelbase Calibration Through Circular Driving

Once the wheel diameter error of the vehicle was corrected, the systematic odometry error in
a circular driving test was used as the wheel track error. The circular driving test was performed
five times in clockwise (CW) and counterclockwise (CCW) directions while keeping the steering
angle constant.

Figure 5 shows the results of the circular driving test before and after wheel track calibration.
The squares and circles represent the circular paths of the vehicle before and after calibration, respectively.
The heading angle odometry error before calibration was αccw = −1.3◦ in the CCW direction and
αcw = −1.5◦ in the CW direction. Here, bcali was calculated as 1632.8 mm from the measured α.
As shown in Figure 3, after calibration, the odometry error was reduced. Furthermore, the final position
calculated via odometry was corrected to close to zero. The final position error before calibration was
distributed at a position distant from the origin. The average final position error after calibration was
0.035 m in the CCW direction and 0.015 m in the CW direction, which is 2.5 and 9.0 times superior to the
pre-calibration values of 0.035 m in the CCW direction and 0.135 m in the CW direction, respectively.
Thus, the wheel track was properly calibrated using the proposed scheme.
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4.2.3. Non-Systematic Error Parameter Estimation

The control input model was constructed using the corrected wheel diameters and wheelbase,
and the non-systematic parameters (kl, kr) of each wheel were calculated. The previously obtained
straight track driving and circular track driving data were used in the calculation of the process
noise parameters. Table 1 presents the non-systematic parameters calculated for each track. Because
the non-systematic parameter is larger for the circular track than for the straight track, we selected
kl = 0.0279 and kr = 0.0292 as the process noise parameters of the circular track for the construction of
the sensor model.

Table 1. Estimation results for kl and kr (m/m).

Test Run

Straight CCW CW

kl 0.0047 0.0279 0.0141
kr 0.0048 0.0176 0.0292

4.2.4. Motion Model Verification Experiment

Experiments were conducted to verify the wheel odometry motion model. Encoder data was
collected while driving on the oval track for approximately 200 m. The results of the wheel odometry
motion model verification are presented in Figure 6. The post-calibration path has a similar shape
to the actual path (compared with the pre-calibration path), and the final position error is reduced.
The final position error for the odometry path was calculated to be 32.79 m before calibration and
2.44 m after calibration. The mean error of the total path was 20.99 m before calibration and 4.61 m
after calibration. Therefore, the systematic error was reduced via the control input model calibration
using the proposed method.



Sensors 2019, 19, 4236 9 of 14

Sensors 2019, 19, x 8 of 14 

 

 
(b) 

Figure 5. Result for the circular path before and after calibration. Comparison of circular path results: 

(a) counterclockwise (CCW); (b) clockwise (CW). 

4.2.3. Non-Systematic Error Parameter Estimation 

The control input model was constructed using the corrected wheel diameters and wheelbase, 

and the non-systematic parameters (𝑘𝑙, 𝑘𝑟) of each wheel were calculated. The previously obtained 

straight track driving and circular track driving data were used in the calculation of the process noise 

parameters. Table 1 presents the non-systematic parameters calculated for each track. Because the 

non-systematic parameter is larger for the circular track than for the straight track, we  

selected 𝑘𝑙  = 0.0279 and 𝑘𝑟  = 0.0292 as the process noise parameters of the circular track for the 

construction of the sensor model. 

Table 1. Estimation results for 𝑘𝑙 and 𝑘𝑟 (m/m). 

 Test Run 

 Straight CCW CW 

𝑘𝑙 0.0047 0.0279 0.0141 

𝑘𝑟 0.0048 0.0176 0.0292 

4.2.4. Motion Model Verification Experiment 

Experiments were conducted to verify the wheel odometry motion model. Encoder data was 

collected while driving on the oval track for approximately 200 m. The results of the wheel odometry 

motion model verification are presented in Figure 6. The post-calibration path has a similar shape to 

the actual path (compared with the pre-calibration path), and the final position error is reduced. The 

final position error for the odometry path was calculated to be 32.79 m before calibration and 2.44 m 

after calibration. The mean error of the total path was 20.99 m before calibration and 4.61 m after 

calibration. Therefore, the systematic error was reduced via the control input model calibration using 

the proposed method. 

 

Figure 6. Comparison of the circular driving paths before and after wheel diameter and wheelbase 

calibration. 

Figure 6. Comparison of the circular driving paths before and after wheel diameter and wheelbase
calibration.

4.3. Sensor Model Construction

For construction of the GNSS sensor model, the RE and ASE were measured in environments
where the multipath effect and foliage attenuation were negligible, as shown in Figure 8. We used
the NovAtel Propak-V3 as the GNSS sensor and measured sensor data at 10 Hz for 10 min in three
different environments. The measured data were used to calculate the RE and ASE. Three types of
calibration models were used: integer RTK, float solution, and no data (no calibration model). In this
experiment, we used a horizontal DOP because it captures the influence of the satellite constellation
on the position estimate in the horizontal plane, while ignoring the vertical component, given that
the vehicle commonly drives in a horizontal plane. The measured results are presented in Table 2.
The values of the RE and ASE were set as the mean values in each environment.

4.3.1. RE Measurement

We assumed that the ASE value was zero and used integer RTK as the calibration model. Then,
the RE value of the NovAtel Propak-V3 was calculated to be 0.02 m.

4.3.2. ASE Measurement

Table 2 presents the calculated ASE (state) for each calibration model. The calibration models
(except for the integer RTK where the uncertainty was assumed to be zero) were calculated to have
uncertainty that was dependent on the state. The networked transport of radio technical commission
for maritime services (RTCM) via internet protocol (NTRIP) method was used for the GNSS RTK [17].
NTRIP is a technique for calibrating an existing GNSS model by receiving calibration signals from a
network. The difference between float and integer solutions is in the format of ambiguity resolution.
Integer RTK resolution at a single station can be achieved by introducing predetermined, uncalibrated
phase delays into the float ambiguity estimates of precise point positioning [18].

Table 2. Calculated ASE values for each calibration model.

State ASE (state)

None 0.89 m
Float Solution 0.69 m
Integer RTK 0.00 m

4.3.3. LCE Measurement

The experimental environment for the LSE value was a 2.4 km city road, as shown in Figure 7.
The experiment was performed by driving along the yellow line. The car started at the red point
and stopped at the blue point. We obtained the GNSS sensor data by driving 10 times, and the
vehicle speed did not exceed 50 km/h. The experimental environment can be classified into two
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types based on environmental characteristics. The first environment had a large multipath effect and
foliage attenuation due to buildings, as shown in Figure 7. The ground truth for calculating the GNSS
position error was obtained using the SICK LMS111 mounted on the front of the vehicle, as well as
odometry. The horizontal standard deviation error of the ground truth was 0.2 m (1σ). The results
of the GNSS sensor measurement during nine driving tasks are presented in Figure 8a. The LCE
variable is calculated from the GNSS data collected by driving the experiment site nine times. With the
precalculated RE and ASE values, and the measured DOP and σG, we derive the LCE, as shown in
Equation (10). The calculated LCE map is shown in Figure 8b.Sensors 2019, 19, x 10 of 14 
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4.3.4. GNSS Sensor Model Verification

To verify the GNSS sensor model constructed using the RE, ASE, and LSE, we compared the
uncertainties of the sensor and the proposed GNSS sensor model. The numbers of ground truths
included in the error ellipses of different confidence intervals were compared, and the results are
presented in Figure 9. In Figure 9, the blue line denotes position error, the green line is twice the
uncertainty provided by a conventional sensor model, and the red line is twice the uncertainty of the
proposed method. There is no significant change in the section where the GNSS sensor operates well.
However, where the signal blindness of the GNSS sensor increases, the proposed technique accurately
represents the uncertainty of the sensor.
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We compare the results from the conventional GPS sensor model with the results from the
improved sensor model [19]. The RMS between GNSS measurement error and estimated error
(2σ) over the entire interval of the experiment is 0.42 m in the proposed model and 1.08 m in the
conventional method, as shown in Table 3. This means that the proposed uncertainty model accurately
represents the uncertainty of the actual sensor. The number of epochs in the 2σ ellipse range should
theoretically be 95%, it should be 97.6% for the proposed model, and 72.8% for the conventional model.
The proposed method accurately estimates the theoretical 2σ range. Figure 9 compares the magnitude
of the uncertainty of the proposed GNSS sensor model with that of the conventional GNSS sensor
model. The closer the estimated uncertainty is to the actual position error, the higher the accuracy of
the sensor model. The environment in Figure 9a is an environment with few high buildings around,
and the environment is more certain due to the multipath effect. The environment in Figure 9b,c is
high in uncertainty caused by the GNSS sensor because of the surrounding high buildings and trees.
In the conventional method, the uncertainty magnitude of the GNSS sensor is predicted to be larger or
smaller than the actual position error. However, the proposed method has a value that is similar to the
position error.

Table 3. Result of GNSS sensor model verification.

RMS between
Measurement Error and Estimated Error (2σ)

Number of Epochs
in the 2σ Ellipse

Proposed 0.42 m 97.6%
Conventional 1.08 m 72.8%
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4.4. EKF Localization Using the Proposed Models

To evaluate the effectiveness of the proposed model, we compared the EKF localization results
obtained using the proposed and conventional models. This experiment was performed on hardware
with a Core i5-6600 3.30GHz. The code was written using MATLAB. EKF localization using the
proposed and conventional models was performed at 10 positions. Figure 10 shows the results for
experiment place 3. If the GNSS sensor measurement is accurate, there will be no significant difference
between the proposed model and the conventional model. However, Figure 10b shows a result where
the GNSS sensor measurement was inaccurate, and the EKF localization performance of the proposed
model was more stable than that of the conventional model. Similarly, in Figure 10c, the conventional
method models the uncertainty of the GNSS sensor smaller than it is, resulting in a large error. Table 4
shows the results of EKF location estimation using the proposed technique in different experimental
environments. The position error is reduced in all experimental environments. Environment 1 in
Table 4, where the surrounding buildings are high, shows a high-performance improvement.
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Table 4. Error for position estimation (m).

Error Conventional Model Proposed Model Difference

Experiment place 1
Position

Avg. 28.5 m 4.9 m 96.50%
Max. 56.7 m 8.5 m

Experiment place 2
Position

Avg. 4.4 m 3.6 m 18.20%
Max. 15.4 m 10.6 m

Experiment place 3
Position

Avg. 7.0 m 5.3 m 24.30%
Max. 56.2 m 14.0 m

5. Conclusions

We proposed a practical method for constructing an odometry motion model and a GNSS sensor
model. The odometry motion model was constructed using a circular track and a straight track,
and the model constructed using the oval track driving results was verified. The GNSS sensor model
was composed of ground truth contained in the error ellipse between the proposed model and the
model provided by the sensor. Finally, we compared the results of EKF location estimation using the
proposed motion model and the sensor model to the EKF location estimation results obtained using the
pre-correction motion model and the GNSS sensor-provided model for three positions. The proposed
models exhibited higher estimation accuracy. In all experiments, the position error is improved by 46%
on average. Good performance is also shown for environments with tall buildings and trees. In future
work, we will consider extending the approach towards a local characteristic error map that is updated
in real time.
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LCE Local characteristic error
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