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Abstract—In this paper, we present an efficient and robust
GPS-aided visual inertial odometry (GPS-VIO) system that
fuses IMU-camera data with intermittent GPS measurements.
To perform sensor fusion, spatiotemporal sensor calibration
and initialization of the transform between the sensor reference
frames are required. We propose an online calibration method
for both the GPS-IMU extrinsics and time offset as well as a
reference frame initialization procedure that is robust to GPS
sensor noise. In addition, we prove the existence of four unob-
servable directions of the GPS-VIO system when estimating in
the VIO reference frame, and advocate a state transformation to
the GPS reference frame for full observability. We extensively
evaluate the proposed approach in Monte-Carlo simulations
where we investigate the system’s robustness to different levels
of GPS noise and loss of GPS signal, and additionally study the
hyper-parameters used in the initialization procedure. Finally,
the proposed system is validated in a large-scale real-world
experiment.

I. INTRODUCTION AND RELATED WORK

For any autonomous robotic system, robust and accu-
rate localization is a primary requirement. Localization is
typically performed by estimating the robot’s state using
measurements from on-board sensors. Of many possible
sensor deployments, cameras and inertial measurement units
(IMUs) — which measure linear accelerations and angular
velocities of the moving robot — are commonly used for
3D navigation [1] in both indoor and outdoor environments,
as they are low-cost yet provide high-quality ego-motion
estimation [2]-[5]. However, when only using these sensors
it is difficult to provide long-term, drift-free estimation due
to the accumulation of relative motion errors. A commonly
used approach to bound navigation error is a simultaneous
localization and mapping (SLAM) that exploits loop-closure
constraints to correct the accumulated error [6], [7]. How-
ever, such methods have a major drawback of both increased
computational complexity and memory requirements.

As compared to SLAM, global measurement sensors, such
as those from Global Positioning System (GPS), directly pro-
vide absolute position information to reduce drift. However,
the accuracy of GPS measurements is highly dependent on
the surrounding environment and the availability of external
correction data. Synchronous sensors have been particularly
considered in prior works, of which many fused inertial
and GPS readings [8]-[11], with others leveraging camera,
inertial and GPS sensors fusion [12]-[17] with great success.
The asynchronous inclusion of GPS measurements within a
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Fig. 1: Simulation results of GPS-VIO with calibration (blue), GPS-VIO
without calibration (red), and VIO (yellow). The green and red squares
correspond to the start and end of the 9.1km trajectory, respectively.

sensor fusion framework remains challenging due to their
low rate, high noise, and intermittency.

In order to optimally fuse multiple sensor measurements
from different sensor frames, the transformation between
the sensor frames and the time offset between the sensors
must be known. An initial imperfect guess of the calibration
between the sensor frames is often known beforehand, but
if it is treated as perfect the state estimation can suffer, thus
its refinement during online estimation is highly desirable.
For a camera and IMU pair, the calibration of spatial and/or
temporal parameters is well studied in [18]-[21]. While
offline calibration of camera, IMU and GPS is often per-
formed within an optimization framework [22], [23], online
estimation of the transformation among the sensors was also
investigated within a Kalman filter (KF) framework [13],
[24]-[26]. However, to the best of our knowledge, no work to
date has considered the estimation of the time offset between
the GPS and IMU/camera, and their inherent asynchronous
nature can greatly impact the estimation performance if
ignored.

GPS provides latitude, longitude, and altitude readings in
a geodetic coordinate frame, which is commonly converted
to Cartesian coordinate East-North-Up (ENU) {E}, e.g., by
setting the first GPS measurement as the datum. Conversely,
a visual inertial odometry (VIO) system estimates its state
relative to a starting VIO frame {V'}, and is known to have
four unobservable directions corresponding to the global po-
sition and yaw [27], [28]. In order to fuse GPS measurements
in the global frame { E'} with VIO state estimates in the {V'}
frame, the transformation between them must be computed,
which is the “reference frame initialization” problem. Unlike
sensor calibration, an initialization procedure is required to
find this unknown transformation that varies from run-to-run.

This initialization problem can be formulated as a general
3D position trajectory alignment problem. For example,



Horn [29] used singular value decomposition (SVD) of a
covariance matrix to derive a closed-form solution. Shepard
et al. [30] leveraged this method to compute a 7 degree-of-
freedom (d.o.f) transformation between synchronized GPS
and VIO trajectories. Umeyama [31] presented a method in
the presence of large trajectory noises, which was used to find
the transformation between two gravity aligned trajectories
[32], [33]. Other works have employed additional informa-
tion for initialization, including magnetic sensors [34]-[36],
yaw calculation with a straight planar motion assumption
[37], or a prior map constructed in the global frame [16].

Note that the closest to this work is VINS-Fusion [12],
which is a loosely-coupled estimator that fuses GPS measure-
ments and VIO’s relative poses in a secondary optimization
thread. While VINS-Fusion shows impressive performance in
practice, the system (i) assumes synchronized measurements
with perfectly known timestamps and an identity transfor-
mation between GPS and IMU, (ii) lacks support for online
refinement of sensor calibration, and (iii) does not explicitly
initialize the ENU to VIO frame transform while assuming
that the estimates will converge in the ENU frame as more
GPS measurements are collected.

In this paper, we develop a tightly-coupled VIO system
aided by intermittent GPS measurements to provide persis-
tent global localization results, while focusing on spatiotem-
poral sensor calibration and state initialization. In particular,
the key contributions of this work are the following:

e We propose a tightly-coupled multi-state constraint
Kalman filter (MSCKF)-based [38] estimator to op-
timally fuse inertial, camera, and asynchronous GPS
measurements. The system can begin with VIO only
(e.g., indoors) and convert the frame of reference to
the ENU frame at an arbitrarily later timestep when
GPS measurements become available for fusion. This
ensures that the system provides seamless localization,
and once global information is available the system is
able to estimate in this frame of reference.

o To the best of our knowledge, this is the first work
that models GPS-IMU time offset and performs online
calibration of both the extrinsics and time offset. We
also introduce a reference frame initialization procedure
that is robust to high GPS noise which leverages the
solution to a quadratic constraint least-squares problem
[39]. We numerically analyze the choice of this proce-
dure’s hyper-parameters under different GPS measure-
ment noise levels.

o We perform an observability analysis of the GPS-VIO
system to show that there are four unobservable direc-
tions if the 4 d.o.f transformation between the ENU to
VIO frames is kept in the state vector, while the system
is fully observable if estimating in the ENU frame.

o« We evaluate the proposed GPS-VIO extensively in
simulations, showing the calibration convergence under
different measurement noise levels and the robustness
to loss of GPS. Moreover, the proposed method is also
validated on a real-world, large-scale experiment with
both indoor and outdoor portions which exhibits varying
GPS noise levels.

Fig. 2: Our integrated sensor system is composed of five different frames:
ENU frame {E}, VIO frame {V'}, IMU sensor frame {I}, camera sensor
frame {C'}, and GPS sensor frame {G}. {E'} is the frame of the reference
of the GPS measurements and {V'} is the local frame set up by VIO whose
orientation is aligned with gravity.

II. PRELIMINARIES: MSCKF BASED VIO

The standard VIO state x at timestep k consists of the
current inertial state xy, and n historical IMU pose clones

xc, [38]. All states are represented in the arbitrarily chosen
gravity aligned frame of reference, {V'}, see Fig. 2:
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where {/’C(j is the JPL unit quaternion [40] corresponding to
the rotation from {V'} to {I} (i.e., rotation matrix {*R),
Vpr, and Vv, are the position and velocity of {I} in {V'},
and b, and b,, are the gyroscope and accelerometer biases,
respectively. We define x = xHx, where x is the true state,
X is its estimate, X is the error state, and the operation H
which maps a manifold element and its correction vector to
an updated element on the same manifold [41].

A. State Propagation
The linear acceleration a,, and angular velocity w,,
measurements of the IMU are used for propagation:
am:a+{/Rg+ba+nav Wn=w+b,+n, @)

where a and w are true acceleration and angular velocity,
g ~ [0 0 9.81]T is the global gravity, and n, and n,, are
zero mean Gaussian noises. These measurements are used to
propagate the IMU state from timestep k to k + 1 based on
the following generic nonlinear kinematic model [40]:

Ve = F(V Rk, Qg Wiy, ) &)

where x,;, denotes the estimate at timestep a processing the
measurements up to timestep b. We linearize (5) at the current
estimate and propagate the covariance forward in time:

Priip = ®(trrt, i) Prp®(tirr tr) +Qu  (6)
where ® and Q are the state transition matrix and discrete
noise covariance [38].

B. Visual Measurement Update

We maintain a number of stochastic clones in chk,
and perform visual feature tracking to obtain series of
visual bearing measurements to 3D environmental features.
A measurement z; at timestep ¢ is expressed as a function
of a cloned pose and feature position V' p Iz

z; = II(“ps) + (7N
“pr=YRyR (Yps—Vp1,) +p1 ®)



1T .
where II([z y 2]") = [£ %] s the perspective pro-
jection, and ?R and “p; represent the camera to IMU
extrinsics. By stacking all measurements for a given feature,

the corresponding linearized residuals z. is given by:
ch = kavfik. + kavf)fk +np, )

where H, and H; are the measurement Jacobians of the
state and the feature. The key idea of the MSCKF is to find
the left null space of Hy and left multiply (9) by it to infer
a new measurement function that depends only on the state:

(10)
which can be directly used in an EKF update without storing

features in the state, leading to substantial computational
savings as the problem size remains bounded over time.

=l 1 Vi /
ch—ka X + 10y,

III. GPS MEASUREMENT UPDATE AND CALIBRATION

Besides the visual measurement update as in the standard
MSCKEF, whenever a new GPS measurement in the ENU
frame { £’} is available, we will update the state with it. This
requires knowledge of the transform between the two frames
{ER, Fpy}, which we will explain in the next section. In
particular, the GPS measurement ¥ Pg, at timestep k is:

ng::Eka:EpV+\E/Rvpck+n9k::h(vxk) +ng, (11)
Ypo, = pr. + ¥R pg (12)

where /pg is the GPS to IMU extrinsic calibration and n,,
is a white Gaussian noise. We note that while here LR
is written as a full rotation matrix, we represent it as one
that only rotates about the global gravity aligned z-axis. Due
to the delayed asynchronous nature of the GPS sensor, the
state has likely advanced beyond the collection time and thus
we express the measurement as a function of the available
stochastic clones. Using linear interpolation [42], the IMU
pose in Eq. (12) can be expressed as:

UR=Exp(\Log (PRYRT)) PR (13)
Vpr, = (1-N)Vpr, +\Vpy, (14)
A= (tp +Ttg -ta)/(ty - ta) (15)

where Ite is the time offset between the GPS and IMU
clocks, the bounding poses have timestamps ¢, < ({r +
Tte) < ty, and Exp(-), Log(-) are the SO(3) matrix expo-
nential and logarithmic functions [43].

As evident from Egs. (11)-(15), the GPS measurement
model depends on both the IMU states and the GPS-IMU
extrinsic and time offset, thus enabling online spatiotemporal
GPS-IMU calibration. To update with this measurement in
the MSCKEF, we linearize it at the current estimate and have
the following measurement Jacobians:

afg~ = VRYRT'pox | Ii(A0) (I (N.0) " - A3(26) ) (16)
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Fig. 3: The variation of windows during and after GPS-VIO initialization.
GPS-VIO inserts keyframes after the first GPS measurement is received, and
marginalize the keyframes after the initialization, leaving only the standard
camera clones.
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where [-x | is the skew symmetric matrix, J; and J, are left
and right Jacobians of SO(3) [43], and 20 = Log({/bR{/“ RT).
With these, we are ready to perform EKF update. The details
can be found in the companion technical report [44].

IV. GPS-VIO INITIALIZATION

As mentioned earlier, when performing an EKF update
with GPS measurements Eq. (11), the 4 d.o.f frame trans-
formation {ER, Fpy-} must be known. To find this, we can
collect two sets of position estimates of the GPS receiver in
two different frames and formulate a non-linear optimization
problem to align them. This process requires us to have
estimates of the GPS receiver positions in both {E} and
{V'} frames. In the case of inaccurate GPS measurements,
alignment using a short trajectory length may result in
a poor transformation estimate due to the true trajectory
being buried in the large measurement noise. As shown in
simulations in Section VI, the smart use of longer trajectories
allows for accurate alignment even with high noise.

In the standard MSCKF-VIO, the current sliding window
typically contains a very short and most recent portion of
the trajectory, which does not support reliable GPS-VIO
initialization. Therefore, we augment our state by selectively
keeping the clone poses (i.e., keyframes) that bound GPS
measurements at a fixed temporal frequency. As illustrated
in Fig. 3, once we reach the desired trajectory length, we
perform interpolation for all GPS measurement times that
fall within the keyframe window to find the corresponding
position estimates in the VIO frame.

Given a set of GPS position measurements in the ENU
frame {¥pg,, -+ ,¥pg, } within the keyframe window and
the corresponding interpolated positions in the VIO frame
{Vpag,, -+ Vpa,}, we use the following geometric con-
straints to derive the frame initialization:

Epe, = Fpy+tR pg,,Vi=1---n=

PaG, 7EpG'1 = \FjR(VpGj —VpGl)’Vj =2...n

2L

B (22)

As mentioned earlier, there is a 4 d.o.f (instead of 6 d.o.f)
transformation including 3 d.o.f translation and 1 d.o.f for
yaw between the ENU and VIO frames due to the fact that
both frames are gravity aligned, which entails that we can
simply use the rotation about the global z-axis with yaw



angle 6:
cos 6 —sinf 0
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With (23) we can re-write (22) as the following linear
constraint:

cos 6 )
Aj [sin@] =A;w=Db;,Vj=2---n 24)
Stacking all these constraints yields the following linear
least-squares with quadratic constraint, which can be solved
for w, e.g., by Lagrangian multipliers [39]:

min ||[Aw —b|?, st. ||w[*=1 (25)

The solution of (25) immediately provides the sought rotation
{”;R. We substitute it into (21) and solve for Fpy as:
1 -

oy ==>" [Epci - xE/RVpGi}

n-
=1

(26)

The resulting {ZR, Ppy} initial guess of the GPS-VIO
frame transformation is further corrected using delayed ini-
tialization [42], [45], which appends the transform to the
state in a probabilistic fashion. Specifically, by augmenting
the state vector with the transformation along with an infinite
covariance prior for these new variables, we perform the
standard EKF update using all collected GPS measurements.
After initialization, we marginalize all the keyframes to
reduce the state to the original state size (see Fig. 3).

V. OBSERVABILITY ANALYSIS OF GPS-VIO

As system observability plays an important role state
estimation [27], [46], in this section we perform an observ-
ability analysis for the proposed GPS-aided VIO system to
gain insights about state/parameter identifiability. For concise
presentation, we consider a simplified case where the state
does not contain biases or stochastic clones and assumes
a single feature with perfectly synchronized and calibrated
sensors, while the results can be extended to general cases:

T
el BaT Ppl| @n
The linearized error state evolution and residuals of both the

GPS and visual measurement are generically given by (see
(5), (7) and (11)):

X = P(tr, to)Xo + Wy

z = HypXp +nyg

_ | IeT VT VT
Xe = |vd Pr, VI

(28)
(29)

Given this linearized system, we have the following result:
Lemma 5.1: If estimating states in the VIO frame, even
with global GPS measurements, the GPS-VIO system re-
mains unobservable and has four unobservable directions.
Proof: We first compute the state transition matrix (6):

P, 03 03  O3x7
o (I)Q Ig AtIg 03><7
®(t, to) = P; 03 I3 0347 (30)
O7x3 O7rxz Oryxz  In
where ®; = FRPRT (31)

. . . 1 .
b, = —valk - VpID - VVIOAt+ igAt2><J€,"RT (32)

(I>3 = —I_V\A’[k = V\Aflo —l—gAtxJ{,”lflT
At =ty - tg

(33)
(34)

Linearization of (7) and (11) yields the following measure-
ment Jacobians:

H, = HpH, *Hgi/‘ﬁ 053 Hin' R A02A><1 02><3} (35)
03 ER 03 03 ([ERVPnx]): Is
I s 1 g z=
where H; = L‘}CR(V[A)f - Vf)]k)XJ, Hg = |2 1 i s

0 >
and (-), is the third column of the matrix. Note that the fifth
column is 5 by 1, because we have 1 d.o.f for the {E} to
{V'} rotation. Now we can construct the observability matrix
M (see [47]) and compute its null space as:

: 05 [V, x]g

M = |Hy®(tx, to) |, null(M) = I, |[Ybrxlg (36)
: 01><§ ('gﬁ»g)d
’\L;R 03x1 16x4

where (+)3 is the third element of the vector. The span of the
columns of this matrix encodes the unobservable subspace.
By inspection, the first block column corresponds to the
translation of {V'} relative to {E} and the second block
column to the rotation of {V} with respect to {E} along
the axis of gravity. It thus becomes clear that the GPS-
VIO system in the VIO frame has these four unobservable
directions which are essentially inherited from the standard
VIO [27], [28]. ]

While the above results seem to be counter-intuitive given
the availability of global GPS measurements, the root cause
of this unobservability is the gauge freedom of the 4 d.o.f
GPS-VIO frame transformation. Thus even though we utilize
global measurements, the system maintains a non-trivial null
space. Unobservable directions are known to cause inconsis-
tency issues for linearized estimators as these null spaces
falsely disappear due to numerical errors. Therefore the
estimator gains information in spurious directions, hurting
overall consistency and accuracy, unless special techniques
are utilized [27], [48]. To address this issue, we perform state
estimation directly in the ENU global frame of reference
once initialized, which can be shown to make the system
fully observable.

Lemma 5.2: If estimating states in the ENU frame, the
GPS-VIO system is fully observable.

Proof: The simplified state in the ENU frame is:

_ | Ie=T E.T ET
Xk = [EC] Py, Vi

-
Ppj £aT Ppy| G7)
Then the state transition matrix of the new state ®'(ty,to) is
equivalent to Eq. (30) with all parameters that are in {V'} are
now in {E'}. Also, the corresponding GPS measurement Ja-
cobianis H, = [03 I3 03><10] (see Eq. (11)). Clearly, the
multiplication of Hy®’ (¢, to) with null(IM) does not yield
a zero matrix which means the four unobservable directions
of Eq. (27) are now observable given GPS measurements.
Since VIO is known to have four unobservable directions
[27], [28], we can conclude that the state in the ENU, see
Eq. (37), is fully observable. [ ]
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Fig. 4: The calibration errors respect to the size of GPS measurement noise.

TABLE I: Average position and orientation errors over ten runs for different
initialization distances and GPS noise values in units of meters/degree.

dist\c  0.lm 0.5m Im 2m 5m

Sm 1.59/0.65 7.08/3.20 14.32/6.56 29.37 / 69.84 69.17 / 92.37
10m 1.39/0.52 5.23/2.23 10.22/4.39 19.80/47.79 45.02/91.85

20m 0.90/0.29 2.68/1.08 5.02/2.07 9.78/4.08 25.49/49.75
50m 0.55/0.08 0.77/0.16 1.09/0.30 1.88/0.61 4.58/1.49
100m 0.51/0.09 0.49/0.06 0.55/0.12 0.85/0.24 2.18/0.63

As a final remark about the proposed GPS-VIO estimator,
based on the above lemma, after GPS-VIO initialization,
we therefore transform the state from {V} to the {E}
and propagate the error state and covariance based on the
linearization of this transform function g(-) as follows:

E (38)

(39)

where W is the Jacobian matrix [44]. We note that the
{E} to {V} transformation inserted into the state during
initialization, see Section IV, has been marginalized since
all measurements can now be written directly in terms of
the remaining state variables.

Xk = g(vxka ‘E/Ra EpV)
= Fx,=0%x,, PP =0P°0W’

VI. SIMULATION RESULTS

The proposed GPS-VIO was implemented within Open-
VINS [49] which provides both simulation and evaluation
utilities. The key simulation parameters are: maximum of
15 clones, maximum of 100 actively tracked features with
1 pixel Gaussian noise, while the IMU was simulated using
realistic noise from a real sensor. The camera was simulated
at 5SHz, while the GPS sensor was simulated with a lower
frequency of 2Hz with varying measurement noises ranging
from 0.Im to 5Sm. As shown in Fig. 1, the trajectory of
the dataset is 9.1km in length, following that of a planar
vehicle motion with an average velocity of 9m/s. Except for
the results in Section VI-C, Monte-Carlo simulation results
are reported over 10 runs.

A. Initialization with Different Hyper-parameters

To gain insight into how the initialization procedure is
affected by GPS measurement noise and trajectory length,
we simulated 0.1, 0.5, 1, 2 and 5m GPS measurement noise
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Fig. 5: Calibration errors of the proposed GPS-VIO with 5Sm GPS sensor
noise and the corresponding consistency bounds. The blue lines are the
errors and the red dotted lines are the 3 standard deviation bounds of each
error

and 5, 10, 20, 50 and 100m initialization distance thresholds.
To prevent biasing these results to the initial section of this
particular trajectory, it is split into non-overlapping segments
for each distance threshold. The initialization procedure was
independently performed on each segment and the resulting
statistics on the accuracy of the initialized VIO to ENU
transform are shown in Table. I.

In general, the initialization errors are smaller with a larger
distance threshold and with smaller GPS noise. The results
indicate that reasonable accuracy for this transformation can
be achieved after 50m for most realistic levels of GPS
measurement noise. In practice, these results can be used to
determine the needed distance threshold for different sensor
uncertainties.

B. Calibration with Different GPS Noise Levels

In order to study the calibration convergence of the pro-
posed system, we performed extrinsic calibration and time
offset between the GPS and IMU with poor initial guesses.
The groundtruth and initial guess for the extrinsic were
[2.00 3.00 1.00] " and [5.40 1.65 6.62] T meters, while for
the time offset they were 0 and -1.3 seconds. The calibration
results for the first 400 seconds are shown in Fig. 4, which
clearly demonstrates that the time offset calibration con-
verges to near zero. The final converged extrinsic calibration
error follows that of the GPS measurement noise except
in the Sm o case. This shows that the convergence of the
extrinsic is highly dependent on the measurement noise and
whose final error is on the order of the GPS measurements.

A representative run is shown in Fig. 5, all calibration was
able to converge within the first 100 seconds of the dataset
while remaining consistent. The static lines at the beginning
of the each are from before initialization in the ENU and
thus no GPS measurements that are required to update these
parameters have been used. As expected, the y-error, which
is mostly aligned with gravity in this scenario, shows little
decrease in state uncertainty due to this axis corresponding
to the normal of the plane of motion [21].
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Fig. 6: The position error of each method in the case of intermittent GPS.

C. Robustness to Intermittent GPS Signals

To validate the robustness to intermittent GPS measure-
ments, we simulated a series of GPS dropouts during which
the GPS-VIO purely relied on visual and inertial information.
The GPS dropouts lasted 120 seconds in length, the ENU
to VIO transformation was set to identity to allow for
comparison to pure VIO, and the calibration was perturbed
as in the last simulation.

Fig. 6 shows the errors of GPS-VIO with online calibra-
tion, GPS-VIO without online calibration, and pure VIO.
Before initialization in ENU all systems are purely VIO.
After the initialization in the ENU at around 150 seconds,
the proposed method begins fusing GPS data and thus
quickly bounds its errors. It is clear that poor calibration can
hurt the system’s estimation even in the presence of global
measurements. Finally, the relatively good accuracy of the
VIO is able to “bridge the gap” between the GPS-available
regions, providing high-quality navigation estimates over the
entire trajectory. Note that reducing error of the pure VIO
at time around 800 seconds is because the trajectory has
loops, which brings the estimation and groundtruth close by
chance.

VII. EXPERIMENTAL RESULTS

We further evaluate the proposed GPS-VIO in a real-
world scenario. The trajectory begins in an indoor parking
garage during which the system does not have access to
GPS measurements until a minute in when it exits the
structure. During the outdoor segment the vehicle travels
several kilometers before returning to the same GPS-denied
structure. The total length of the data is about 4.9km, and
we used a monocular camera-imu pair, alongside two GPS
receivers all of which were mounted rearward on the trunk of
the collection vehicle. One low-cost GPS sensor was used for
GPS measurements while the second provided RTK data for
groundtruth. The covariance of each GPS measurement was
computed by RTKLIB library [50]. We compared our system
against the open sourced VINS-Fusion [12] system. We used
30 clones and a max of 150 features for the proposed GPS-
VIO while for VINS-Fusion a max of 200 features and a
max solver time 0.04 were used. We note that VINS-Fusion
does not take into account the GPS-IMU calibration.

Fig. 7 shows the result of the experiment. The RMSE
of each trajectory compared with RTK groundtruth when-
ever it is available are: 3.57m (GPS-VIO w. calib), 7.03m
(GPS-VIO wo. calib), 6.66m (VINS-Fusion) and 15.95m
(VIO). We gave the initial hand measured extrinsic value
[0.06 0.11 -0.03]T meters and time offset of zero for both

250 :
—GPS VIO w. calib
| —— GPS-VIO wo. calib
VINS-Fusion

200
150
100

y-axis (m)

-200
-250

2300 = el

-100 0
x-axis (m)

Fig. 7: The red line is GPS-VIO with online calibration, blue is GPS-VIO

without online calibration, yellow is VINS-Fusion, light blue is VIO only,

and green is RTK GPS. The green and red boxes denote the start end points
of the trajectory.

GPS-VIO w. calib and GPS-VIO wo. calib. The extrinsic
calibration converged to a value of [-0.49 0.70 -0.07] " at the
end of the dataset which is within the expected convergence
bounds associated with the 1-10 meters observed GPS noise.
We found time offset calibration quickly converged to a
nontrivial value of -0.85 seconds which given the 7.4m/s
average vehicle velocity equates to 6.3m position error if
not properly calibrated, and thus validates the need for online
estimation of this parameter. As compared to VINS-Fusion
our method can achieve higher accuracy while also being
a light-weight single threaded estimator which runs in real
time. We also note that since VINS-Fusion does not estimate
VIO to ENU transform explicitly, its pose output may not
suitable for real time applications, and Fig. 7 shows the final
optimized trajectory after completion of the dataset.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an efficient and robust
GPS-VIO system that fuses GPS, IMU, and camera measure-
ments in a tightly-coupled estimator. In particular, to robus-
tify the system, we have focused on the online GPS-VIO
spatiotemporal sensor calibration and frame initialization.
The observability analysis shows that if estimating states
naively in the VIO frame, the system remains unobservable
as the standard VIO; however, this can be mitigated by
transforming the system to the global ENU frame after GPS-
VIO frame initialization, which is exploited in the proposed
GPS-VIO estimator. This system has been validated in both
Monte-Carlo simulations and real-world experiments. In the
future, we will integrate mapping capability into this GPS-
VIO system.
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