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Abstract— In this paper, we introduce a novel visual-inertial-
wheel odometry (VIWO) system for ground vehicles, which
efficiently fuses multi-modal visual, inertial and 2D wheel
odometry measurements in a sliding-window filtering fashion.
As multi-sensor fusion requires both intrinsic and extrinsic
(spatiotemproal) calibration parameters which may vary over
time during terrain navigation, we propose to perform VIWO
along with online sensor calibration of wheel encoders’ intrinsic
and extrinsic parameters. To this end, we analytically derive the
2D wheel odometry measurement model from the raw wheel
encoders’ readings and optimally fuse this 2D relative motion
information with 3D visual-inertial measurements. Additionally,
an observability analysis is performed for the linearized VIWO
system, which identifies five commonly-seen degenerate motions
for wheel calibration parameters. The proposed VIWO system
has been validated extensively in both Monte-Carlo simula-
tions and real-world experiments in large-scale urban driving
scenarios.

[. INTRODUCTION

Autonomous ground vehicles have found their ways into
many applications from autonomous driving and warehous-
ing to military and agriculture robots navigating off-road
rough terrains. High-precision consistent 3D localization
with low-cost multi-modal sensors (given that engineered
robotic systems have limited cost budgets) is essential to
enable such autonomy. Among all possible sensor suites,
cameras, IMUs and wheel encoders are appealing because
of their ubiquity and low costs while providing sufficient
information for 3D motion estimation. While visual-inertial
odometry (VIO) has witnessed great success in recent years
and has shown that even a single camera and IMU can
provide accurate 3D motion tracking [1], VIO can suffer
from unobservability if it undergoes planar motions such as
constant acceleration which is a common case for ground
vehicles. Thus, it is necessary to further aid VIO with addi-
tional sensors such as wheel encoders (which are typically
come with wheeled ground vehicles) [2], [3]. As such, in
this work we aim to develop efficient visual-inertial-wheel
odometry (VIWO).

It is well understood that accurate calibration is a pre-
requisite for multi-sensor fusion, which is often obtained
offline and assumed to be constant during operation (e.g.,
[2]). However, calibration parameters may change over time,
for example, due to mechanical vibration and environmental
effects, which, if not addressed properly, can hurt the es-
timation performance (e.g., see Fig. 1). We thus advocate
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Fig. 1: Simulation results for VIWO with online calibration (blue), VIWO
without calibration (red), and VIO (yellow). The green square and red
diamond correspond to the start and end of the 8.9km trajectory, respectively.

to perform online sensor calibration of both intrinsic and
extrinsic parameters in the proposed VIWO.

In particular, an efficient, consistent, and tightly-coupled
VIWO estimator is developed, which also performs online
sensor calibration of the wheel encoder’s intrinsics and the
spationtemporal extrinsics between the wheel odometer and
IMU/camera. Note that IMU/camera calibration has been
well studied in our prior work [4] and is assumed known
in this work without a loss of generality. Note also that we
employ a differential-drive kinematic model [5], instead of
the instantaneous center of rotation (ICR)-based model for
skid-steering robots as in [3], arguably because it better mod-
els the actual kinematics of two-wheel driven (not tracked)
vehicles and its intrinsic calibration provides robustness to
non-systematic errors. Specifically, the main contributions of
this work include:

o We develop an efficient MSCKF-based VIWO estimator
to optimally fuse IMU, camera, and preintegrated wheel
measurements, which particularly models the wheel-
IMU time offset and performs online calibration of both
intrinsic and extrinsic spatiotemproal parameters.

e We derive a state transition matrix for the MSCKF-
based linearized system, which implicitly incorporates
the stochastic cloning and perform the observability
analysis based on it to identify degenerate motions that
cause calibration parameters to become unobservable.

« We evaluate the proposed VIWO extensively in simula-
tions, showing the calibration convergence, the robust-
ness to poor initial calibration values, and the estimation
consistency. We demonstrate the unobservability of the
calibration parameters when the vehicle undergoes de-
generate motions. The proposed VIWO is also validated
in a large-scale urban driving experiment.



II. RELATED WORK

Rich literature exists on differential drive kinematic mod-
els and their offline intrinsic calibration [6]-[9], for example,
Kummerle et al. [10] performed online calibration within
a graph optimization framework and [11], [12] calibrated
sensors within the filtering framework. These methods focus
on processing odometry measurements at the sensor rate
and thus can suffer computational burdens as the frequency
increases. In contrast, preintegration of odometry measure-
ments over time create an inferred measurement about the
change of the robot state, and allows update at a lower rate,
thus reducing computational burdens. For example, wheel
odometry measurements are preintegrated for 2D localization
with online intrinsic calibration in [13], [14]. Note that in
[3], sliding-window optimization for 3D localization of an
ICR-based skid-steering robot [15], along with online wheel
intrinsic calibration was performed. Although the ICR model
encompasses differential drive models as a special case, as
the model incorporates the wheel slippage into the intrinsics,
the ICR intrinsic parameters were modeled as a random walk,
which requires more parameters to tune and may introduce
more degenerate cases.

Offline extrinsic calibration of the wheel odometry and
other sensors has also been well studied. For example,
Antonelli et al. [16] performed relative 3D orientation and
2D position calibration between the camera and the odom-
etry frame with known landmarks, while Heng et al. [17]
calibrated the wheel and multi-camera without the need of
environmental targets. Online calibration approaches also
exist, for instance, in [18]-[20] graph optimization was used
for 6DOF spatial calibration. However, all these methods as-
sumed the sensors are time-synchronized. Note that the time
offset is different from sensor asynchronicity and describes
the disagreement between sensor clocks. As shown in our
previous work [21], even a small time offset error between
the sensors can greatly affect estimation errors. To the best
of our knowledge, no work has yet investigated this time
offset calibration between wheel odometry and IMU/camera,
although significant research efforts in VIO has studied both
online calibration of IMU/camera time offset [22]-[26] and
offline calibration [27]-[30].

Observability analysis [31], [32] is important due to its
ability to indicate the minimum states needed to initialize
an estimator, identify degenerate motions which can affect
estimation accuracy [2], [33], and design consistent estima-
tors [34]. Understanding observability properties and degen-
erate motions is especially essential for ground vehicles due
to their constrained motions that prevent the full excitation of
the sensor suite. For the differential drive model, Martinelli
et al. [35] showed that with camera and wheel sensors,
the wheel odometry intrinsic and 2D extrinsic calibration
parameters are observable up to the scale under general
motion. The author also found a degenerate motion where
the parameters are not observable when each wheel keeps the
same speed ratio. Censi et al. [36] performed intrinsic and
2D extrinsic calibration between wheel and laser sensors and
showed three motion profiles for which the parameters are
observable, but did not provide specific degenerate motions.

Other then differential drive model, Zuo et al. [3] analyzed
the observability of intrinsics of skid-steering model with
degenerate motion studies, Yang et al. [4] did comprehensive
observability studies on extrinsic and time offset parameters
between a camera and an IMU and provided the degenerate
motion analysis.

III. VIO WITH MSCKF

In this section, we briefly review the VIO within the stan-
dard MSCKF framework [37], which serve as the baseline
for the proposed VIWO system. Specifically, at time ¢, the
state vector xy, consists of the current inertial state x;, and
n historical IMU pose clones x¢, represented in the global
frame {G}:

.
xk:[x}rk ng] (1)
I»— T
xi, = (a7 bl Ov] b b]] @
It = Ipon = T
xc, = [¢*q" “p, - &rd vl )

where gf(j is the JPL unit quaternion [38] corresponding to
the rotation g“R from {G} to IMU frame {I}, “p;, and
Gvy, are the position and velocity of {I} in {G}, and b,
and b, are the biases of the gyroscope and accelerometer. We
define x = xH x, where x is the true state, X is its estimate,
X is the error state, and the operation HH which maps the
error state vector to its corresponding manifold [39].

A. IMU Kinematic Model

The state is propagated forward in time using the IMU lin-
ear acceleration a,,, and angular velocity w,, measurements:

am:a—i—éRg—i—ba—&—na , Wp=w+bg+n, @
where a and w are the true local acceleration and angular
velocity, g ~ [0 0 9.81] " is the global gravity, and n, and
n, are zero mean Gaussian noises. These measurements are
used to propagate the state estimate and covariance from time
tr to tx4+1 based on the standard inertial kinematic model
f£(-) [38]:
)A(k—‘,-l\k = f(xk|k7am7w’m7070) (5)
Piiipe = S(thir, th)Prp®(trrs, i) + Qi (6)
where X,;, denotes the estimate at time ¢, formed by

processing the measurements up to time ¢, and ® and Q
are the state transition matrix and discrete noise covariance.

B. Camera Measurement Model

Sparse corner features are detected and tracked over a
window of images associated with the cloned frames xc¢, .
The resulting bearing measurements, zj, are given by:

z, = II(“*py) + ny, (7
“py = FRER(“ps — “pr) +ps @®)
where IT ([z y 2]7) = [£ %]T is the perspective projec-

tion, “p ¢ 1is the 3D point feature position, and ?R and “p;
are the camera to IMU extrinsic transformation.! Stacking

Note that in this paper we assume that the camera-IMU extrinsics along
with the temporal calibration (i.e., the time offset between the two sensors),
are known — which however can be calibrated either offline or online [40]
— so that we can focus on the online intrinsic and extrinsic calibrations of
the odometer and IMU in the proposed VIWO system.
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Fig. 2: Sensor frames in this paper: IMU frame {I}, camera sensor frame
{C}, and odometry frame {O} located at the center of the baselink

all measurements corresponding to a single feature and
performing linear marginalization of the feature’s position
(via a null space operation) results in a residual that depends
only on the state [37]:

Ze, = Hp X + 1y, 9

This then can be directly used in EKF update without storing
features in the state, leading to substantial computational
savings as the problem size remains bounded over time.

IV. WHEEL-ENCODER MEASUREMENT MODEL

Building upon the preceding VIO models, we now general-
ize our 3D motion tracking system to optimally incorporate
2D wheel-encoder measurements that are commonplace in
ground vehicles. In particular, a ground vehicle is often
driven by two differential (left and right) wheels mounted on
a common axis (baselink), each equipped with an encoder
providing local angular rate readings [5]:

(10)
where w; and w, are the true angular velocities of each wheel,
and n,, and n,, are the corresponding zero-mean white
Gaussian noises. These encoder readings can be combined

to provide 2D linear and angular velocities about the vehicle
body or odometer frame {O} at the center of the baselink:

o Op = (wprr +wyr) /2 (11)

where xyy = [r; 7 b]' are the left and right wheel radii
and the baselink length, respectively.

Wmi = wy + Ny Wmr = Wr + N,

w = (wpry —wiry) /b,
.

A. Wheel Odometry Preintegration

As the wheel encoders typically provide measurements of
higher rate (e.g., 100-500 Hz) than the camera, it would be
too expensive to perform EKF update at their rate. On the
other hand, as a sliding window of states corresponding to
the imaging times are stochastically cloned in the state vector
[see (1)], we naturally preintegrate the wheel odometry mea-
surements (11) between the two latest camera poses and then
use this integrated 2D motion measurement for the MSCKF
update together with the visual feature measurements [see
(9)]. As a result, the state vector of our VIWO remains the
same (up to online calibration) as that of the VIO, incurring
only a small extra computational overhead.

Consider preintegrating wheel odometry measurements
between two clone times tj and ¢x4;. The continuous-time
2D kinematic model for ¢, € [t,tx 1] is given by:

om0 =%w (12)
i, = v cos(J70) (13)
O"'Z)OT =9y sin(8;9) (14)

Algorithm 1 VIWO Odometry Measurement Update

1: procedure WHEEL_UPDATE(Xj, 11k {Wmis Winr fk:k+1)
2: // Preintegrate measurements and Jacobian
3 z = 0341

0
4 35{5{/1’ Pm = 03
5 for Wnl(r)s Wmr(r) € {wml(k:kJrl)vwmr(k::k:Jrl)} do
6: z=1z+ Az
T T
7 Pm - ét’l"ﬂ'P'ln@tr,T + q)nﬂ'(QT(I)n,‘r
og  _ Og

8 OxXwr (I’tr,‘rm + ‘I’WI,T
9: end for
10: // Compute residual and Jacobian
11: EZZ_h(fCIa&C7§(WEaOtI7)A(WI)
12: H—|2h oh oh  0g oh

: T | 0x1 O0x¢c Oxwge  Oxwr 8%
13: // Perform x? test & update
14: if x*(2,H,P,,,) == Pass then
15: )A(k+1‘k+1 = EKF,Update(fckJr”k, z,H, Pm)
16: end if

17: end procedure

where 70 is the local yaw angle, ©*zo_ and ©*yo_ are the
2D position of {O;} in the starting integration frame {O}}.
Note that this model reveals the fact that the 2D orientation
evolves over the integration period. We then integrate these
differential equations from ¢ to tx4; and obtain the 2D
relative pose measurement as follows:

ct41
/ "0t

Oki1 i te
Zhy1 = |:Okoél 0 } = / Oty Cos(glﬂ)dt (15)
Ok+1 t{”'tkﬂ
/ Oty sin(gi 0)dt
tr
=1 @(Wi(k:kt1)> Wr(kik+1)> XWT) (16)

where w(y.;41) denote all the wheel measurements inte-
grated t; to tg41. If both extrinsic and time offset (spa-
tiotemporal) calibration parameters between the odometer
and IMU/camera are perfectly known, the above integrated
odometry measurements can be readily used in the MSCKF
update as in [2]. However, in practice, this often is not the
case, for example, due to inaccurate prior calibration or me-
chanical vibration. To cope with possible time-varying cal-
ibration parameters during terrain navigation, the proposed
VIWO performs online calibration of the wheel-encoders’
intrinsics Xy, and the extrinsics xywr = [$g" “p;]T
and time offset ©¢; between the odometer and IMU. Note
again that the IMU and camera are assumed to be calibrated
and synchronized for presentation brevity. To this end, we
augment the state vector (1) with these parameters:

T

xi =[x}, X6, Xy Ot Xy (17)
In what follows, we will derive in detail the relation between
the preintegrated wheel odometry measurements (16) and the

augmented state (17) by properly taking into account the
intrinsic/extrinsic calibration parameters:

Zpi1 = h(Xr,,, X0, Xwe, Yt Xwr) (18)
B. Odometry Measurement wrt. Intrinsics

As evident from (11) and (16), the wheel-odometry inte-
gration entangles the intrinsics xyy s, and ideally we should



re-integrate these measurements whenever a new estimate of
intrinsics is available, which however negates the computa-
tional efficiency of preintegration. To address this issue, we
linearize the preintegrated odometry measurements about the
current estimate of the intrinsics while properly taking into
account the measurement uncertainty due to the linearization
errors of the intrinsics and the noise [see (16)]:
Zk 11~ &(Wini(kikt 1)> Winer (ki 1), K1) +8§7miW1+£17gwnw
19)
where n,, is the stacked noise vector whose 7-th block is
corresponding to the encoder measurement noise at ¢, €
[t thy1] (e, [N, nwm]T) [see (10)].

Clearly, performing EKF update with this measurement
requires the Jacobians with respect to both the intrinsics
and the noise in (19). It is important to note that as the
preintegration of g(-) is computed incrementally using the
encoders’ measurements in the interval [ty, tx11], we accord-
ingly calculate the measurement Jacobians incrementally one
step at a time. Note also that since the noise Jacobian and n,,
are often of high dimensions and may be computationally
expensive when computing the stacked noise covariance
during the update, we instead compute the noise covariance
by performing small matrix operations at each step.

Specifically, linearization of (15) at time t, yields the
following recursive equations:

Or11j 5 -

Ok+10 = 8;9 + Hl,‘rXWI + H2,‘rnw,r (20)
io,,, =%Fo, + Hs 070+ Hy Zws + Hs ny, - (21)
O ~

o, = %jo, + Her 370 + Hy -y + Hg 1y, - (22)
where the intermediate Jacobians, H; .,/ = 1...8, can be
found in our companion technical report [41]. With the above
equations, we can recursively compute the noise covariance
P, -+1 and the Jacobian ag*“ as follows:

DT
1 0 0 H , H, ,
étr‘,‘r: HB,T 1 0f, (I)WI,T: H4,T ) (Pn,‘r: HSA,T (23)
HG,T 01 H7,T H&T
Pri1 =P Prs®) +8,,Q,9, (24)
0gr41 g,
_ P 2
6)~(WI tr, Ta~ + Wi, ( 5)

where Q. is the noise covariance of wheel encoder mea-
surement at t,. These equations show how the Jacobian
and the noise covariance evolve during the preintegration
interval. We thus can recursively compute measurement noise
covariance P,, and the Jacobian matrix 859 at the end of
premtegratlon tk+1, based on the zero 1n1t1al cond1t10n (.e.,
P..0, = 03).

C. Odometry Measurement wrt. Extrinsics

aij

1) Spatial calibration: Note that the preintegrated wheel
measurement (16) provides only the 2D relative motion on
the odometer’s plane, while the VIWO state vector (17)
contains the 3D IMU/camera poses. In order to establish
the connection of the preintegrated odometry with the state,
clearly the relative transformation (extrinsic calibration) be-
tween the IMU and the odometer is required [see (15)]:

Log( RI’”HRI’”RTORT)

Ok41
OOk 0 Ol - o (26)
"‘dok+1 AFR¢g R( Pr..+ 7 R'po —“p1.) +9p1

where A = [e; ey] ', e; is the i-th standard unit basis vector,
and Log(-) is the SO(3) matrix logarithm function [42]. As
this measurement depends on the two consecutive poses as
well as the odometer/IMU extrinsics, when updating with
it in the MSCKE, the corresponding measurement Jacobians
are needed and computed as follows [see (26) and (18)]:

oh  _ [ es IR O1x3  Oixo 27
3 AORffHRLIf)O | APRER 0ay

oh [ e 7RIVR O1cs (28)
aick+l _A(I)Rl.gcR(Gf)OkJA - Gf)fk )J _A?RgR

oh _ . e;(I_ngR)A 013 (29)
OXwE _A(LJORka)OMJ+8Z+1RLOI31J) AI-GF R)

where || is the skew symmetric matrix.

2) Temporal calibration: To account for the difference
between sensor clocks and measurement delay, we model an
unknown constant time offset between the IMU clock and the
odometer clock:? 't = 9t;, + 9t;, where 't;, and ©t;, are
the times when measurement z; was collected in the IMU
and odometer’s clocks, and ©¢; is the time offset between
the two time references. Consider that we want to derive
preintegrated odometry constraints between two cloned states
at the true IMU times ‘¢, and I ti+1. Using the current best
estimate of the time offset 77, we can integrate our wheel
encoder measurements between the odometer times ¢, =
Tt — 9%; and OtkH = Itk+1 — Of;, whose corresponding
times in the IMU clock are:

=T, =% + % =1t + %%, (30)
Mgy o=t = Ot + % =Tt + 94 (3D

After preintegration we have the 2D relative pose measure-
ment between the times '#) and ¢, , while the correspond-
ing states are at the times '¢;, and '¢;_ . To update with this
measurement, we employ the following first-order approxi-
mation by accounting the time-offset estimation error:

I( tk)R (I . Ll(tk)wot~IJ)é(tk)R
P[(Itgc) ~ PI(tk) + GVI(tk)O’?I

(32)
(33)

Using this relationship, we can compute the measurement
Jacobian of the time offset as follows [see (20)]:

oh eT?R(Ile HIRI’Cw) (34)
aotl AOR(LIprkHJIkw ?LHRVf)OJIkHw + Ik{’hﬂ)

Note that in our experiments we use the IMU angular
rate measurement and the current estimate of velocity in
computing the above Jacobian.

D. Odometry Measurement Update

At this point, we have obtained the preintegrated wheel
odometry measurements along with their corresponding Ja-
cobians which are readily used for the MSCKF update:

Zit1 = 8(Wmi(kekt1)> Wrnr(kkr 1) Xw 1) — h(%7, %0, %w e, Otr)

Oh Oh _ oh og

oh | < Og
xwr 09ir Xk+176n n, (35)

Hy 1

2We assume that the two wheel encoders are hardware synchronized and
thus their readings have the same timestamps.



Note that similar to how we treat visual features, we also
employ the Mahalanobis distance test to reject bad preinte-
grated odometry measurements (which can be due to some
unmodelled errors such as slippage) and only those passing
the X2 test will be used for EKF update. To summarize, the
main steps of the odometry measurement update are outlined
in Algorithm 1.

V. OBSERVABILITY ANALYSIS

As system observability plays an important role for state
estimation [31], [32], we perform the observability analysis
to gain insights about the state/parameter identifiability for
the proposed VIWO. For brevity, in the following we only
present the key results of our analysis while the detailed
analysis can be found in the companion technical report [41].

For the analysis purpose, in analogy to [43], we consider
the following state vector which includes a single cloned
pose of x7, , and a single 3D point feature pr:

T xI xI 17 T 04 T a1’
Xe= [ka Xcy, Xetc]? Xete= [XWE tr Xyrr pf] (36)

The observability matrix for the linearized system is:
M=[H] (H;®q,)" (Hk-‘1’<k,o))T]T 37

where @, o) is the state transition matrix which is not
obvious when including the clone in the state vector and
will be derived below, and H}, is the measurement Jacobian
at time step k (e.g., see (35)). If we can find matrix IN that
satisfies MIN = 0, the basis of N indicate the unobservable
directions of the linearized system.

A. State Transition Matrix

In the MSCKF-based linearized system, the state transition
matrix corresponding to the cloned state essentially reveals
the stochastic cloning process. To see this, first recall how
the cloned states are processed [44]: (i) augment the state
with the current IMU pose when a new image is available,
(i) propagate the cloned pose with zero dynamics, (iii)
marginalize the oldest clone after update if reaching the
maximum size of the sliding window. In the case of one
clone, this cloning corresponds to the following operation
(while marginalization in the covariance form is trivial):

Is O6x9 0 Ogx13
o 0O9x6 Iy Ogx6  0Ogx13| &
Xl X 38
klk Is Osxo  Og  Opxiz|” Flk (38)
013x6 O13x9 O13xe  Ti3

One may model this state transition by including all the
clones (with zero dynamics) in the state vector. This may
complicate the analysis as it needs to explicitly include all the
clone constraints, while we here construct the state transition
matrix with implicit clone constraints.

We discover that cloning and propagating the current error
state Xj can be unified by the following linear mapping:

®r k1) Prosrry 06 Osxis
= Pr k41,) Protks1r) Ooxe  Ooxiz| g
X e 21 , 22 > X 39
k1 Is O6x9 05 Ogxiz| ~ < (39)
O13x6 O13x9 O13x6  Ii3

E(k41,k)

where ®; = ghl i’l?], is the IMU state transition matrix

I Iz
(see [43]). Note that Ig in the third block row copies

the IMU pose of Xj into Xj4; as a cloned pose without
changing its value, while the cloned state in X; has been
discarded (marginalized). The above operation clearly reveals
the MSCKEF cloning process and thus, we will leverage this
linear system (39) for the ensuing analysis.

Specifically, during the time interval [to,t541], we have
the following linear dynamic system:

X1 = E(tpr1, te)E(tr, te—1) - - E(t1,t0) X0 (40)
E(tr+1,t0)
P k41,00 Prisk+1,00 06 Ogx1s
= — | Pryk+1,0) Praok+1,0) Ooxe Ogxi3 41
=(k+1,0) W (k11,0) 069 Os  Opx13 (41)
013x6 O13x9  O13xe Ii3

We also enforce the constraint that the initial IMU pose and
the clone state at time ty are identical, whose error states
have the following constraint:

[Is  Ogxo] X1, = X¢, (42)

With (40) and (42), we finally have the following state
transition matrix @1 oy for our observability analysis:

XD Prkt10)  Oisxe  Owsxaz| | Xr
X | = | Osxo  Puyr0) Osxiz | [Xo, (43)
Xete 013x15 O13x6 I3 Xete

P (11,0

B. Observability Properties

Based on the measurement Jacobians and state transition
matrix [see (9), (35) and (43)], we are able to construct
the observability matrix (37) of the MSCKF-based linearized
system under consideration. Careful inspection of this matrix
reveals the following results (see [41] for details):

Lemma 5.1: The proposed VIWO has the following ob-
servability properties:

o With general motions, there are four unobservable di-
rections corresponding to the global position and the
yaw angle as in VINS [43].

o As matrix blocks of the observability matrix that are
related to the wheel-encoder’s extrinsic and intrinsic
calibration parameters highly depend on dynamic states
and encoder’s readings, these blocks can be full-rank
given sufficient motions, implying that these parameters
are observable, which has been validated in simulations
in terms of convergence (see Fig. 3).

o We identify the following five degenerate motions that
cause the odometer’s calibration parameters to become
unobservable, which might be commonly seen for
ground vehicles:

Motion Unobservable
Pure translation Op b
1-axis rotation Op;

Constant angular and linear velocity ~ ©t;
No left/right wheel velocity ry /Ty
No motion R, Opr, ry, e, b

VI. SIMULATION VALIDATIONS

The proposed VIWO was implemented within the Open
VINS [45] framework which provides both simulation and
evaluation utilities. We expanded the visual-inertial simulator
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TABLE I: Simulation parameters and prior single standard deviations that
perturbations of measurements and initial states were drawn from.

Parameter Value Parameter Value
Cam Freq. (hz) 10 IMU Freq. (hz) 200
Wheel Freq. (hz) 50 Num. Clones 15
Max. Feats 200 Feat. Rep. GLOBAL
Pixel Proj. (px) 1 Wheel. White Noise 1.0e-03
Gyro. White Noise 1.0e-04 Gyro. Rand. Walk 1.0e-04
Accel. White Noise 1.0e-04 Accel. Rand. Walk 1.0e-04
Wheel Ext (Ori). Ptrb.  1.0e-02 ~ Wheel Ext (Pos). Ptrb. 1.0e-01
Wheel Int. Ptrb. 1.0e-02 Wheel Toff. Ptrb. 1.0e-02

TABLE II: Relaive pose error (RPE) of each algorithm (degree/meter).

50m 100m 200m NEES
VIO 0.362/1.252  0.494/2245 0.657 / 3.930 3.921/3.895
true w. cal ~ 0.277 / 0.550  0.365/0.908  0.479 / 1.573 1.952/2.020
true wo. cal  0.259/0.384  0.340/0.622  0.443/1.125 1.698 / 1.473
bad w. cal 0.276 / 0.543  0.365/0.888  0.486 / 1.526 1.943 /7 1.826
bad wo. cal  0.572/0.510 1.104/1.142  2.239/3.367 59.678 / 183.538

to additionally simulate a differential drive robot which can
only have velocity in the local x-direction (non-holonomic
constraint [5]) and have listed the key simulation parameters
in Table I. In order to validate the proposed calibration
method, we tested VIWO on a large-scale neighborhood
simulation dataset with four different combinations: with
“bad” or “true” initial calibration parameters and with or
without online calibration. The bad initial values were drawn
from the prior distributions specified in Table I. 50m, 100m,
and 200m relative pose error (RPE, [46]) and the average
normalized estimation error squared (NEES) results of the
four configurations and standard VIO for comparison are
shown in Table II. VIWO with “bad” initial values with
calibration showed similar RPE results compare to those
had “true” initial values, while VIWO with “bad” initial

are reported.
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values without calibration has a very poor estimation per-
formance and a large NEES due to treating the incorrect
calibration as being true. Fig. 1 shows the trajectory of the
algorithms, and clearly shows the failure of estimation when
not performing calibration. We found that the system was
particularly sensitive to the wheel intrinsics and even with
small perturbations the system without online calibration
provided unusable estimation results.
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Fig. 7: urban39 results of VIWO with calibration (blue), VIWO without
calibration (red), VIO (yellow) and wheel odomtry (purple). The green
square and red diamond correspond to the start and end of the 11.06 km
trajectory, respectively.

A. Extrinsic, Intrinsic, and Time offset Calibration

To validate that all calibration parameters are able to
converge for random motion, we simulated a trajectory which
excited all-axes motions without invalidating non-holonomic
constraint. Shown in Fig. 3, we performed online extrinsic,
intrinsic, and time offset calibration six times with different
initial perturbations. We additionally plot the 30 bounds,
which should bound the error in the case that our estimator
is consistent. It is clear that all calibration parameters are
able to quickly converge to near their true values and remain
within 30 bounds.

B. Degenerate Motion Validation

One of the degenerate motions that are of particular
interest to grounded vehicles is planar motion. Fig. 4 shows
the calibration results for the starting segment of the planar
trajectory shown in Fig. 1. The extrinsic z-axis does not
converge since the trajectory is in the global x-y plane and
thus the robot only rotates around its z-axis causing this
extrinsic to become unobservable. Note that the roll and
pitch portion of the orientation (left top and left middle of
Fig. 4) has a slower rate of convergence compared to other
parameters because planar motion does not provide good
geometrical constraints.

A straight line motion with constant linear velocity and
no rotation, which is a special case of both pure translation
and constant angular/linear velocities, is also simulated. To
prevent the unobservable parameters from affecting other
calibration, we only estimate either the wheel intrinsics or
time offset and show their estimation results. Shown in Fig.
5, it is clear that the baselink is unable to converge, while the
wheel radius can still converge due to having scale from the
IMU. Fig. 6 shows the time offset is unable to be calibrate
in this straight line case.

VII. REAL WORLD EXPERIMENTS

We further evaluate the proposed VIWO in a real-world
urban dataset urban39 [9] which is collected in urban area
with 11.06 km long trajectory, and used the stereo camera,

TABLE III: Values of calibration parameters before/after calibration

Parameter Before After
left wheel radius 0.311740 0.312262
right wheel radius 0.311403 0.311843

base length 1.52439 1.53201

Ext. Pos [-0.070, 0.000, 1.400]  [-0.062, 0.003, 1.384]
Ext. Ori [0.000, 0.000, 0.000]  [0.000, 0.001, -0.002]
Time offset 0.00000 -0.02723

IMU, and wheel encoder measurements for the estimation.
We compared VIWO with calibration (VIWO w. cal), VIWO
without calibration (VIWO wo. cal), and VIO to evaluate
the performance. Additionally, we also included the pure
wheel odometry trajectory, to deliver the sense of wheel
measurements errors. We used 25 clones and 200 features
for the real-time estimation along with online IMU-camera
intrinsic and spatiotemporal extrinsic calibration, and the
resulting trajectories of each algorithm are shown in Fig.
7. The dataset provides the ground truth which is computed
from graph SLAM. The root mean squared error (RMSE)
of orientation and position of each algorithm were: VIWO
w. cal 1.713 / 42.748 , VIWO wo. cal 2.874 / 52.657,
VIO 5.276 / 66.316, and Wheel Odometry 50.439 / 481.093
(degrees / meters). The initial values of parameters and the
final calibrated values are listed in Table. III. We found
the time offset calibration quickly converged to a nontrivial
value of -0.0273 seconds which given the 6.0 m/s average
vehicle velocity equates to 0.163 meters error if not properly
calibrated, and thus validates the need for online estimation
of this parameter. The rest of the calibration parameters also
showed convergence to values that are different from initially
given by small amount, but such change can have large effect
in long-term estimation as shown in Fig. 7.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an efficient and consistent
MSCKF-based visual-inertial-wheel odometry (VIWO) sys-
tem that fuses multi-modal wheel-encoder, IMU and camera
measurements. In particular, to compensate for possible
time-varying calibration and for improving estimation, the
proposed VIWO performs online sensor calibration of the
spatiotempral extrinsics of odometer-IMU/camera as well
as the wheel encoder’s intrinsics. To better understand the
VIWO estimatability, we have conducted in-depth observ-
ability anaylsis for the MSCKF-based linearized system
by leveraging a new state transition matrix that models
the stochastic cloning in the MSCKEF, and have identified
five degenerate motions that may cause online calibration
unobservable. In the future, we will extend the proposed
VIWO to characterize the sensor uncertainty online instead
of using the prior.
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