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Decoupled Right Invariant Error States for Consistent
Visual-Inertial Navigation
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Abstract—The invariant extended Kalman filter (IEKF) is
proven to preserve the observability property of visual-inertial
navigation systems (VINS) and suitable for consistent estimator
design. However, if features are maintained in the state vector, the
propagation of IEKF will become more computationally expensive
because these features are involved in the covariance propagation.
To address this issue, we propose two novel algorithms which
preserve the system consistency by leveraging the invariant state
representation and ensure efficiency by decoupling features from
covariance propagation. The first algorithm combines right invari-
ant error states with first-estimates Jacobian (FEJ) technique, by
decoupling the features from the Lie group representation and
utilizing FEJ for consistent estimation. The second algorithm is
designed specifically for sliding-window filter-based VINS as it as-
sociates the features to an active cloned pose, instead of the current
IMU state, for Lie group representation. A new pseudo-anchor
change algorithm is also proposed to maintain the features in the
state vector longer than the window span. Both decoupled right-
and left-invariant error based VINS methods are implemented for a
complete comparison. Extensive Monte-Carlo simulations on three
simulated trajectories and real world evaluations on the TUM-VI
datasets are provided to verify our analysis and demonstrate that
the proposed algorithms can achieve improved accuracy than a
state-of-art filter-based VINS algorithm using FEJ.

Index Terms—Invariant extended Kalman filter, localization,
mapping, visual-inertial SLAM.

I. INTRODUCTION AND RELATED WORK

DURING the past decades, visual-inertial navigation sys-
tems (VINS) have been widely applied to self-driving

cars, AR/VR and autonomous robots especially in GPS-denied
scenarios [1]. By leveraging a low-cost sensor rig containing
both an IMU and camera, a lightweight, robust and accurate
VINS algorithm [2]–[8] can be deployed to resource-constrained
devices for challenging applications. The majority of VINS al-
gorithms are either based on filter or batch optimization. In spite
of many great works on batch optimization-based VINS [2],
[3], [7], [9], the filter-based algorithms [6], [10]–[14] are still
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extensively used mainly due to their simplicity and efficiency. It
has been investigated that VINS is not fully observable [15]
and has four unobservable directions related to global yaw
and global translation. The standard extended Kalman filter
(std-EKF) based VINS algorithms suffer from inconsistency
issues [5], [15], [16] caused by overconfidence of state estimates.
This is mainly because certain unobservable directions will
erroneously become observable due to the linearization point
change when computing state transition matrix and measure-
ment Jacobians. Spurious information will be gained along with
the unobservable directions. In this case, the system uncertainty
will be underestimated and the estimation accuracy will also be
downgraded.

Efforts [5], [6], [11], [15]–[25] have been devoted to tack-
ling the inconsistency problems of VINS through different
methodologies. Based on system observability analysis, Huang
et al. [26] proposed a first-estimates Jacobian (FEJ) algo-
rithm, which avoids the inconsistent problem by intention-
ally fixing the linearization points with initial estimates. FEJ
was successfully applied to multi-state-constraint Kalman filter
(MSCKF) based VINS systems [5], [14], [27] and achieved
state-of-art performances. However, the estimation performance
of FEJ can be easily hurt due to bad state initialization. Huang
et al. [16] also proposed observability-constrained (OC)-EKF
for consistent estimator design, which enforces the unobserv-
able subspace by manually changing the Jacobians. Hesch
et al. [15] and Sun et al. [12] applied observability con-
straints to build robust and accurate VINS algorithms. However,
the Jacobians used in these algorithms do not strictly follow
first-order Taylor series expansion and are not theoretically
optimal.

Instead of directly manipulating the linearization points or
Jacobians, Bloesch et al. [6] and Huai et al. [11] proposed to use
robocentric state representations, which keep the IMU states and
the landmarks all in the local IMU frame to mitigate the VINS
inconsistency. In this formulation, the system is consistent as
it automatically preserves the unobservable subspaces without
any Jacobian manipulations. However, extra states are required
to be kept in the state vector, such as gravity [11]), which might
cause extra unobservable directions.

In recent years, the manifold theory, especially Lie group [28]
representation for robot pose, has been applied to robot nav-
igation [18], [19], [23], [25], [29], [30], and shows to im-
prove both estimation consistency and accuracy. Bonnabel and
Barrau et al. [29], [31] first justified and applied an ap-
propriate group SE3(3) to enforce system observability for
filter-based simultaneous localization and mapping (SLAM).
Brossard et al. [21] showed that the IMU propagation with in-
variant error states can naturally describe the banana-shaped un-
certainty distribution for extended pose represented in SE2(3).
Huai et al. [25] leveraged extended poses to design a con-
sistent fixed-lag smoother which jointly estimates IMU poses
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and features. Wu et al. [19] proposed right invariant (RI)-VINS
which uses right invariant errors for VINS states except for IMU
biases. They theoretically showed that RI-VINS can directly
satisfy the unobservable properties of VINS without Jacobian
modifications. They further combined RI and MSCKF as RI-
MSCKF, which demonstrates improved performance compared
to std-EKF based MSCKF. Heo et al. [23] and Tsao et al. [24]
also did observability analysis to show the nice properties of
using invariant error states for algorithm design. They improved
MSCKF based VINS with IMU state perturbed by RI and left
invariant (LI) state errors, respectively. The above works have
applied invariant error states for the VINS algorithms and shown
to achieve better convergence and accuracy. However, the above
filter-based algorithms do not keep any features in the state
vector, while keeping features in the state, even temporally
with limited qualities will substantially improve the system’s
accuracy and robustness for long-term navigation [5]. Also, their
works were compared only with std-EKF based algorithms even
though there are state-of-art and open-sourced VINS algorithms
based on FEJ-EKF [14]. In addition, we find that the features
will be involved in the state covariance propagation in RI-VINS
if the features are associated with the current IMU state for
the Lie group representation. This will lead to computation in-
creases if more variables (i.e., more features) are included in the
state vectors.

In order to leverage the nice consistent properties of the invari-
ant VINS but also achieve comparable efficiency when keeping
features in the state for better performance, we propose two
novel algorithms that can decouple the features from the state
covariance propagation while maintaining system consistency.
One algorithm represents IMU state in Lie group and the features
in R3. “FEJ” technique is applied to feature states to keep
system consistent. The other algorithm is designed specifically
for sliding-window based VINS, as it decouples the feature state
from the current IMU state and associates it to an active cloned
pose from the sliding window for the Lie group representation.
Specifically, the main contributions of the this work can be listed
as:
� We analytically derived right invariant error based VINS

and found that the feature state is involved in the state
covariance propagation if it is associated with the current
IMU state for the Lie group representation.

� We propose decoupled right invariant (DRI)-VINS al-
gorithms that decouple the feature from state co-
variance propagation while still keeping the system
consistent.

� We perform extensive Monte-Carlo simulations with three
simulated trajectories and different measurement noises
to verify both consistency and accuracy of the proposed
algorithms. Real world evaluations based on TUM-VI
datasets also show improved performances of the proposed
algorithms to state-of-art filter-based VINS.

II. VINS WITH RIGHT INVARIANT ERROR STATES

In this section, we introduce the VINS algorithms with invari-
ant state errors.

A. definition of Left- and Right-Invariant Errors

If y and ŷ are both n× n matrices within the same matrix
Lie group [28], the right- and left-invariant errors can be defined
as [32]:

δyr = ŷy−1 = (ŷL)(yL)−1, δyl = y−1ŷ = (Ly)−1(Lŷ)

where δyl and δyr denote left- and right-invariant errors, re-
spectively; L is an arbitrary element of the same Lie group as
y.

B. State Vector

For simplicity, we assume the state vector contains the IMU
navigation state xn, the bias state xb and a single feature Gpf :

x =
(
xn,xb,

Gpf

)
(1)

where xn = (GI R,GpI ,
GvI) and xb = (bg,ba); GpI , GvI

and Gpf denote the IMU position, IMU velocity and feature
position in the global frame {G}, respectively; G

I R ∈ SO(3)
represents the rotation from IMU frame {I} to {G}; bg and ba

are both in R3 and represent the random walk for gyroscope and
accelerometer, respectively. Following [19], [21], we define xnf

to include xn and Gpf in the Lie group as SE3(3) [31] as:

xnf � (xn,
Gpf ) =

[
G
I R

GpI
GvI

Gpf

03 I3

]
(2)

Notexnf can be perturbed with either left or right invariant error
states. For clarity, we only present right invariant error based
algorithms in this letter and our supplementary materials [33]
cover both cases for readers. By defining x̂ as the estimate

of x and δx =
[
δx�

n δx�
b δp�

f

]� ∈ R18 as the error of the
estimation, we can define � on manifold as:

x = x̂� δx =

(
exp

([
δxn

δpf

])
· x̂nf ,xb + δxb

)
(3)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

exp(δθI)
G
I R

exp(δθI)
Gp̂I + Jl(δθI)δp

exp(δθI)
Gv̂I + Jl(δθI)δv

b̂g + δbg

b̂a + δba

exp(δθI)
Gp̂f + Jl(δθI)δpf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where δxn = [δθ�
I δp� δv�]� ∈ R9 denotes the right invari-

ant error states for IMU navigation state xn which includes
the errors of orientation δθI , position δp, and velocity δv.
δxb = [ δb�

g δb�
a ]� ∈ R6 denotes the IMU bias error states

including δbg and δba. δpf ∈ R3 represents the feature error
state; exp(·) and Jl(·) are matrix exponential and left Jacobians
defined for Lie group [34], respectively. Note that [δx�

n δp�
f ]

�

represent the right invariant errors of xnf .

C. State Propagation

The linear acceleration am and angular velocity ωm readings
from an IMU are:

am = a+ ba + na (5)

ωm = ω + bg + ng (6)

where na and ng are zero-mean Gaussian random noises. The
system dynamic model is thus defined as [35]:

G
I Ṙ = G

I R�Iω�, GṗI = GvI ,
Gv̇I = G

I R
Ia+ Gg

ḃg = nwg, ḃa = nwa,
Gṗf = 03×1 (7)

where nwg and nwa are Gaussian noises driving the biases bg

and ba, respectively; Gg = [0 0 − 9.8]� is the gravity; �·�
denotes a skew-symmetric matrix [35]. By integrating the IMU
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measurements between time tk and tk+1, the consecutive system
state xk+1 propagated from xk is derived as:

G
Ik+1

R = G
Ik
RΔRk (8)

GpIk+1
= GpIk + GvIkδt+

G
Ik
RΔpk +

1

2
Ggδt2 (9)

GvIk+1
= GvIk + G

Ik
RΔvk + Ggδt (10)

bgk+1
= bgk +

∫ tk+1

tk

nwgdt (11)

bak+1
= bak

+

∫ tk+1

tk

nwadt (12)

where δt = tk+1 − tk; ΔRk = exp(
∫ tk+1

tk
Iτωdτ);

Δvk =
∫ tk+1

tk

Ik
Iτ
RIτadτ ; Δpk =

∫ tk+1

tk

∫ s

tk

Ik
Iτ
RIτadτds.

Following [21], the state propagation is reorganized as:

xnfk+1
= ΓkΨ(xnfk)Υk (13)

Γk =

[
I3

1
2
Ggδt2 gδt 03×1

03 I3

]
(14)

Ψ(xnfk) =

[
G
Ik
R GpIk + GvIkδt

GvIk
Gpf

03 I3

]
(15)

Υk =

[
ΔRk Δpk Δvk 03×1

03 I3

]
(16)

Hence, the linearized system (detailed derivations can be
found in [33]) from tk to tk+1 is written as:

δxk+1 � Φk+1,kδxk +Gkndk (17)

Φk+1,k =

⎡
⎣Φnn Φnb 09×3

06×9 I6 06×3

03×9 Φfb I3

⎤
⎦ , Gk =

⎡
⎣Gnn 09×6

06 I6δt

Gfn 03×6

⎤
⎦

(18)

Φnn =

⎡
⎣I3 0 0

0 I3 δtI3
0 0 I3

⎤
⎦ ,Φfb

=
[
−�Gp̂f�GIk+1

R̂Jr(Δθ̂)δt 03

]

Φnb=

⎡
⎢⎣

−G
Ik+1

R̂Jr(Δθ̂)δt 03

−�Gp̂Ik+1
�GIk+1

R̂Jr(Δθ̂)δt+ G
Ik
R̂Ξ4 −G

Ik
R̂Ξ2

−�Gv̂Ik+1
�GIk+1

R̂Jr(Δθ̂)δt+ G
Ik
R̂Ξ3 −G

Ik
R̂Ξ1

⎤
⎥⎦

where Φk+1,k denotes the state transition matrix; Gk is the
measurement noise Jacobian;ndk is discretized IMU noise; Note
thatΦfb = Gfn andΦnb = Gnn;Δθ̂ = log(ΔR̂k); log(·) and
Jr(·) denote the log matrix operation and right Jacobians for
SO(3) [34]; Ξi, i = 1 . . . 4, are integration components defined
in our previous work ACI2 [35]. With (13) and (17), we have
both mean and covariance propagation for Kalman filter.

D. Visual Measurements Update

When the camera is exploring the environment, we can track
the point feature and get the corresponding normalized image
pixel measurement as:

z =
[
x
z

y
z

]�
,Cpf =

[
x y z

]�
(19)

Cpf = C
I R

I
GR(Gpf − GpI) +

CpI (20)
With the definition of error states in (3), we can linearize the
image measurement and compute the Jacobians H � ∂δz

∂δx as:

H =
∂δz

∂δCpf[
∂δCpf

∂δθI

∂δCpf

∂δp
∂δCpf

∂δv
∂δCpf

∂δbg

∂δCpf

∂δba

∂δCpf

∂δpf

]

= HC

[
03 −C

I R̂
I
GR̂ 03 03 03

C
I R̂

I
GR̂

]
(21)

where HC represents the projection Jacobian. We can then per-
form EKF update to get refined state estimates and covariances.
Now we have presented the algorithm for RI-VINS.

E. Observability Analysis

Observability indicates whether the system can recover its
initial states with all the measurements. It can also be used for
system consistency analysis [15], [16] and degenerate motion
identification [36]–[41]. Following [15], the observability ma-
trix for the linearized system is defined as:

O =

⎡
⎢⎢⎢⎣
O0

O1

...
Ok

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H0

H1Φ1,0

...
HkΦk,0

⎤
⎥⎥⎥⎦ (22)

Dropping the subscripts k for simplicity, each block row Ok

is computed as:

Ok = HC
C
I R̂

I
GR̂

[
M1 −I3 −I3δt M2 M3 I3

]
(23)

where:

M1 =
1

2
�Gg�δt2, M3 = G

I0
R̂Ξ2 (24)

M2 = �Gp̂Ik�GIkR̂Jr(Δθ̂)δt− G
I0
R̂Ξ4 (25)

It can be easily found that there are still 4 unobservable direc-
tions for RI-VINS, s.t., ON = 0 with unobservable subspace
N:

N =

[
Gg� 01×3 01×9 01×3

03 I3 03×9 I3

]�
(26)

Different from std-EKF based VINS [5], [15], [27], the
null space of the RI-VINS is unrelated to the state vector.
Hence, the system unobservable subspaces will not be af-
fected by system linearization change. This property makes
RI-EKF automatically avoid inconsistent issues caused by spu-
rious information inflation to system unobservable directions
[15], [16].

However, the drawback for the RI-VINS is that the feature
is associated with current IMU state xn for the Lie Group
representation and involved in the state covariance propagation
(as Φfb and Gfn shown in (18), which would normally be 0 in
std-EKF based VINS [5], [15], [27]). If there are l features in the
state vector, the computation cost of covariance propagation for
std-EKF based VINS is only around O(l) but can rise to O(l2)
for RI-VINS (see complementary materials [33]). This slows
down the system propagation dramatically if more variables are
involved in the state vector and will limit the application of
RI-VINS.

In order to keep the nice property of the right invariant
error states but also consistently incorporate more state vari-
ables (especially features), the most straight-forward solution
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is to decouple the feature from the state covariance propa-
gation. In the following sections, we propose two new algo-
rithms to achieve this goal, named as decoupled right invariant
(DRI)-VINS.

III. DRI-FEJ FOR VINS

If the features are decoupled from the Lie group representation
with the current IMU state and parameterized in R3 space
naively, named DRI-NAIVE, the system becomes inconsistent
because the system unobservable subspaces will be affected
by the feature states. We hence propose DRI-FEJ to combine
DRI and FEJ, which leverages right invariant errors and per-
forms “FEJ” to the feature state Gpf to achieve consistent
performance.

A. Dri-Naive

If the feature is not associated with the Lie group of the current
IMU state but represented in R3 naively, the � in manifold is
re-defined as:

x = x̂� δx =
(
exp (δxn) x̂n,xb + δxb,

Gpf + δpf

)
(27)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

exp(δθI)
G
I R

exp(δθI)
Gp̂I + Jl(δθI)δp

exp(δθI)
Gv̂I + Jl(δθI)δv

b̂g + δbg

b̂a + δba
Gp̂f + δpf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Following similar procedures, the state transition Φk+1,k and
measurement Jacobians are computed as:

Φk+1,k =

⎡
⎣Φnn Φnb 09×3

06×9 I6 06×3

03×9 03×6 I3

⎤
⎦ (29)

H = HC[
∂δCpf

∂δθI

∂δCpf

∂δp
∂δCpf

∂δv
∂δCpf

∂δbg

∂δCpf

∂δba

∂δCpf

∂δpf

]

= HC
C
I R̂

I
GR̂

[�Gp̂f� −I3 03 03 03 I3
]

(30)

It can be observed that the feature is decoupled from the state
covariance propagation as expected, as Φfb = 03×6. We then
compute the observability matrix O and get the new unobserv-
able subspace for DRI-NAIVE as:

N =

[
Gg� 01×3 01×9 −(�Gp̂f�Gg)�
03 I3 03×9 I3

]�
(31)

It shows that, different from RI-VINS of which the unobservable
subspace is invariant of state estimates, the unobservable sub-
space of DRI-NAIVE VINS can be affected by feature estimate
Gp̂f . That means if we naively decouple the features, the system
will suffer from inconsistency caused by the feature linearization
change. This claim is further verified by Monte-Carlo simula-
tions in Section V.

B. Dri-Fej

For tackling this inconsistency issue for DRI-NAIVE, the
most straight forward solution is to perform “FEJ” technique
when computing the feature state Jacobians, which avoids the
linearization point change. This proposed DRI-FEJ algorithm

will keep the four unobservable directions of VINS by simply
fixing the linearization points of feature states. Unlike the FEJ
based VINS algorithms in [5], [14], which need to perform
“FEJ” to all the IMU states and feature states, the proposed
DRI-FEJ only uses FEJ for the feature states. Therefore, in the
proposed algorithm, the system can always utilize the current
best IMU state estimates for system linearization. The side
effects of bad state initialization can be mitigated and DRI-
FEJ can achieve better accuracy than FEJ (see Section V). In
addition, the invariant error states can also better capture the
uncertainty of the extended pose [21], and benefit the system
performance.

IV. DRI WITH SLIDING WINDOW FOR VINS

DRI-FEJ is a general algorithm for EKF, and we also propose a
DRI specifically for sliding-window based estimators which are
widely used for VINS algorithms. In this section, we find that the
feature can be decoupled from the state covariance propagation
by associating features with an active cloned pose within the
sliding window for Lie group representation. We further extend
RI-MSCKF [19] to keep the features in the state longer than the
sliding window span for better accuracy and robustness [5]. We
also, for the first time, propose a pseudo-anchor change algo-
rithm, which represents the features in global frame but changes
their associating Lie group pose which might be marginalized
from the sliding window, thus the features can be kept in the
state vector as long as they can still be tracked actively in current
frame.

A. DRI-Sliding Window (SW)

The state vector contains the IMU navigation state xn, the
bias state xb, one feature point Gpf and sliding window states
xc:

x =
(
xn,xb,xc,

Gpf

)
(32)

xc =
(
G
Ic0

R,GpIc0 ,
G
Ic1

R,GpIc1

)
(33)

Note that we only consider two poses in the sliding window
for simplicity. Different from DRI-FEJ, we associate the fea-
ture Gpf with the first clone pose {Ic0} for the Lie group
representation. Thus, the new error states δx ∈ R30 can be
defined as:

δx =
[
δx�

n δx�
b δx�

c δp�
f

]�
(34)

δxc =
[
δθ�

Ic0
δp�

Ic0
δθ�

Ic1
δp�

Ic1

]�
(35)

where δxc represents the errors states for sliding window states
xc. Therefore, the new � for DRI-SW is defined as:

x = x̂� δx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp(δθI)
G
I R

exp(δθI)
Gp̂I + Jl(δθI)δp

exp(δθI)
Gv̂I + Jl(δθI)δv

b̂g + δbg

b̂a + δba

exp(δθIc0)
G
Ic0

R

exp(δθIc0)
Gp̂Ic0 + Jl(δθIc0)δpIc0

exp(δθIc1)
G
Ic1

R

exp(δθIc1)
Gp̂Ic1 + Jl(δθIc1)δpIc1

exp(δθIc0)
Gp̂f + Jl(δθIc0)δpf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)
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Fig. 1. Simulated trajectories. Left: sim_rpng (around 659 m), middle: sine_3 d (around 697 m) and right: udel_gore (around 225 m). Note that the green triangular
denotes the start of the trajectory while the red circle indicates the end.

B. State Transition Matrix and Measurement Jacobians

The state transition matrix for DRI-SW is derived as:

Φk+1,k =

⎡
⎢⎢⎣
Φnn Φnb 09×12 09×3

06×9 I6 06×12 06×3

012×9 012×6 I12 012×3

03×9 03×6 03×12 I3

⎤
⎥⎥⎦ (37)

Clearly, the feature is decoupled from the IMU state covariance
propagation with Φfb = 03×6 (see (18)). If feature is observed
at a cloned pose {Ici}, i = {0, 1}, the frame transformation for
the feature is:

Cpf = C
I R

Ici
G R

(
Gpf − GpIci

)
+ CpI (38)

Hence, we can recompute the Jacobians with feature associated
with {Ic0} for the Lie group representation as:

∂δCpf

∂δθIc0

= −C
I R̂

Ici
G R̂�Gp̂f�, ∂δ

Cpf

∂δθIc1

= −∂δCpf

∂δθIc0

∂δCpf

∂δpIci

= −C
I R̂

Ici
G R̂,

∂δCpf

∂δpf
= C

I R̂
Ici
G R̂

C. Pseudo-Anchor Change

Different from frame anchor change in [14] which repre-
sents the features in the local sensor frame {I} instead of the
global frame {G}, the proposed pseudo-anchor change refers
to changing the associated Lie group representation for the
features in global frame {G}. In order to keep the long-tracked
features in the state vector even when the associated cloned
pose is marginalized from the sliding window, we can perform
pseudo-anchor change, that is to “anchor” the feature to another
active cloned pose in the sliding window for the Lie group
representation.

Since the feature state estimate Gp̂f remains the same, we
only need to modify the covariance of the feature after pseudo-
anchor change. If the associated pose Ic0 of the feature is about
to be marginalized from the sliding window, we then need
to associate the feature with the pose Ic1 for the Lie group
representation. If we define δpfi as the error states for Gpf when
it is associated with cloned pose {Ici}, we have the following
perturbations:

Gpf = exp(δθIc0)
Gp̂f + Jl(δθIc0)δpf0 (39)

Gpf = exp(δθIc1)
Gp̂f + Jl(δθIc1)δpf1 (40)

Then the feature’s new error state δpf1 is written as:

δpf1 = −�Gp̂f�δθIc0 + �Gp̂f�δθIc1 + δpf0 (41)

We then leverage EKF update to get the new state covariance
with (41). The proposed pseudo-anchor change algorithm will

TABLE I
MONTE-CARLO SIMULATION PARAMETERS

not affect the system’s unobservable property. More detailed
discussion can be found in supplementary materials [33].

V. MONTE-CARLO SIMULATIONS

In order to verify our proposed algorithms, we leverage the
simulator in [14], [42] to simulate inertial readings and cam-
era pixel measurements with 3 different trajectories (sim_rpng,
sine_3 d, and udel_gore, shown in Fig. 1). These 3 trajectories
can cover most motion profiles that might appear in real world
environments. The basic configuration for the simulation is listed
in Table I.

We leverage OpenVINS [14] to build our decoupled invariant
error states based VINS system. In the system, the visual features
are classified into two categories: 1) MSCKF features which are
tracked within the sliding window and then marginalized; 2)
SLAM features which are kept in the state vector until we lose
tracks of them. We implement DRI-FEJ (dri_fej) and DRI-SW
(dri_sw) introduced on Section III and IV. For completeness,
we also implement decoupled left invariant(DLI)-FEJ (dli_fej)
algorithm and detailed derivations can be found in supplemen-
tary materials [33]. In addition, the DRI-NAIVE (dri_naive) and
DLI-NAIVE (dli_naive) algorithms, which both decouple fea-
tures from the Lie group of the current IMU state and represent
features in R3 naively, are also implemented and evaluated. For
Monte-Carlo simulations, we perform online spatial-temporal
and camera intrinsic calibration. We also compare our results
with VINS based on std-EKF (std) and state-of-art FEJ-EKF
(fej) both implemented in [14]. In order to test the robustness
of the proposed algorithm to noises, we run 50 Monte-Carlo
runs with all the above mentioned algorithms using 1-pixel and
3-pixel camera measurement noises. Root mean square error
(RMSE), absolute trajectory error (ATE) and relative pose error
(RPE) are used for trajectory accuracy evaluation while normal-
ized estimation error squared (NEES) for system consistency
evaluation.

The overall results are shown in Tables II and III. From
the results, we can see the dri_naive and dli_naive (similar to
std) are inconsistent as their NEES values grow unbounded (see
Table III and Fig. 3). Their performances are much worse than
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Fig. 2. Average RMSE and NEES for 50 Monte-Carlo runs of algorithms
(dli_fej, dri_fej, dri_sw, and fej) with sim_rpng trajectory with 1-pixel and
3-pixel noises, receptively. The proposed dli_fej, dri_fej, and dri_sw achieve
smaller RMSE than fej. As noise increases, all the algorithms remain consistent
with NEES near 3.

Fig. 3. Average RMSE and NEES for 50 Monte-Carlo runs of algorithms
(dri_naive, dli_naive, and std) with sim_rpng trajectory at 1-pixel noise.
dri_naive and dli_naive are inconsistent because the unobservable subspace can
be affected by state estimate changes.

those consistent estimators we proposed, like dri_fej, dri_sw
and dli_fej, of which the NEES values are around or smaller
than 3, for both orientation and position estimates. No matter
using 1-pixel or 3-pixel noises, all the proposed invariant error
based algorithms (dri_fej, dri_sw and dli_fej) can output smaller
ATE and RMSE than fej (see Fig. 2 for sim_rpng and Table II
for all three trajectories). Note that when the noise is increased
from 1 pixel to 3 pixels, the performance of dri_fei and dli_fej is
approaching fej while dri_sw is still performing the best. This is

TABLE II
AVERAGE ABSOLUTE TRAJECTORY ERROR (ATE) FOR 50 MONTE-CARLO RUNS

ON 3 SIMULATED TRAJECTORIES (SIM_RPNG, SINE_3 D AND UDEL_GORE)
WITH 1- AND 3-PIXEL CAMERA NOISES

TABLE III
AVERAGE NORMALIZED ESTIMATION ERROR-SQUARED (NEES) FOR 50

MONTE-CARLO RUNS OF SIM_RPNG TRAJECTORY WITH 1- AND 3-PIXEL

CAMERA NOISES

because dri_sw always uses the best linearization points for the
system Jacobians, while dri_fej, dli_fej and fej, which all need
to perform FEJ to some states, will eventually affected by the
bad state initialization caused by larger noises.

VI. REAL-WORLD EXPERIMENTS

We further evaluate our proposed algorithms with real-world
TUM-VI benchmark [43], which provides gray-scale stereo
images at 20 Hz, a time-synchronized 200 Hz IMU and accurate
pose ground-truth from a motion capture system. We run each
of the above mentioned algorithms (dli_fej, dri_fej, dri_sw, fej,
dli_naive, dri_naive and std) 5 times on TUM-VI Room se-
quences (6 datasets in total). For each run, we keep 11 clones and
track at most 50 SLAM features in the state vector. Some visual
features are treated as MSCKF features and marginalized when
we lose tracking of them. We also perform spatial-temporal and
camera intrinsic calibration during evaluations. The results for
all these algorithms can be seen in Fig. 4 for average RPE and
Table IV for average ATE.

It can be seen that the naive DRI algorithms (dri_naive
and dli_naive) perform similar to std but much worse than
those consistent algorithms (dli_fej, dri_fej, dri_sw and fej).
This verifies that naively decoupling the features from the Lie
group causes system to become inconsistent and degrades VINS
performances, while our proposed algorithms (dli_fej, dri_fej
and dri_sw) can achieve better or comparable accuracy to the
state-of-art fej-based algorithm [14], especially for orientation
estimation. From Table IV, it can be seen that dri_fej and dri_sw
generate smaller orientation ATE and comparable position ATE
than fej for monocular case, and they perform better than fej both
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Fig. 4. Average RPE (orientation and position) plots for 5 runs with different algorithms on TUV-VI datasets Room sequences. In both monocular and stereo
cases, the proposed dri_fej and dri_sw are better than fej.

TABLE IV
AVERAGE TRAJECTORY (ORIENTATION/POSITION) ERROR (ATE) FOR 5 RUNS WITH DIFFERENT ALGORITHMS ON TUM-VI DATASETS ROOM SEQUENCES.

THE PROPOSED DRI_FEJ AND DRI_SW DEMONSTRATE IMPROVED ACCURACY THAN FEJ WHILE DLI_FEJ IS SIMILAR TO FEJ

in orientation and position ATE for stereo cases. The advantages
of dri_fej and dri_sw can be observed more clearly from the RPE
plots (Fig. 4), from which it can be seen that both orientation
and position errors are improved.

For both monocular and stereo cases, the proposed dri_fej
and dri_sw have similar performances. But they achieve better
accuracy than dli_fej and fej, this might be due to the fact that
we only need to perform FEJ to the feature states in dri_fej or
no FEJ is needed for dri_sw. In the meanwhile, dli_fej and fej
both need to perform FEJ to all the sliding window states and
feature states (see supplementary materials [33]), which makes
them more vulnerable to bad state initialization caused by larger
noises or bad feature triangulation.

VII. CONCLUSIONS AND FUTURE WORK

In this letter we investigate the observability of VINS built
on right invariant error states and find that invariant EKF based
VINS can automatically satisfy the system unobservable prop-
erties. However, compared with the standard VINS algorithms,
if the features are maintained in the state vector, the system
suffers from increased computation costs because these feature
states are involved in the covariance propagation. Instead of
naively decoupling the feature state from the Lie group, we
proposed two algorithms to decouple the feature from state prop-
agation consistently. The first algorithm represents the feature

in R3 and performs FEJ only to feature states for consistent
performance. The second algorithm is designed specifically
for sliding-window based VINS, which associates the feature
states with a cloned pose in the sliding window, instead of the
current IMU state, for the Lie group representation. We propose
a pseudo-anchor change algorithm to maintain the feature in
the state vector longer than window span. We implement both
right- and left-invariant error based algorithms for a complete
comparison. In Monte-Carlo simulations, we evaluate three
trajectories with different measurement noises and show our
proposed algorithms remain consistent and perform better than
a state-of-art filter-based VINS algorithm using FEJ. Real world
evaluations on the TUM-VI datasets with both monocular and
stereo cameras are also provided to further verify our proposed
algorithms. In the future, we will apply observability constrained
(OC)-EKF to design DRI-OC algorithm. We will also investigate
the performances of DRI-VINS algorithms under degenerate
motions [40], [41].
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