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Abstract— Achieving accurate, efficient, and consistent local-
ization within an a priori environment map remains a funda-
mental challenge in robotics and computer vision. Conventional
map-based keyframe localization often suffers from sub-optimal
viewpoints due to limited field of view (FOV), thus degrading
its performance. To address this issue, in this paper, we design
a real-time tightly-coupled Neural Radiance Fields (NeRF)-
aided visual-inertial navigation system (VINS), termed NeRF-
VINS. By effectively leveraging NeRF’s potential to synthesize
novel views, essential for addressing limited viewpoints, the
proposed NeRF-VINS optimally fuses IMU and monocular
image measurements along with synthetically rendered images
within an efficient filter-based framework. This tightly coupled
integration enables 3D motion tracking with bounded error.
We extensively compare the proposed NeRF-VINS against the
state-of-the-art methods that use prior map information, which
is shown to achieve superior performance. We also demonstrate
the proposed method is able to perform real-time estimation at
15 Hz, on a resource-constrained Jetson AGX Orin embedded
platform with impressive accuracy 1.

I. INTRODUCTION

The ability to achieve centimeter-level localization accu-
racy is pivotal for resource-constrained edge devices which
have become prevalent through computation miniaturization
enabling AR/VR [1], [2], consumer drones [3], [4], and
autonomous navigation [5]. The ubiquitous use of cameras
and inertial measurement units (IMU) due to their low
cost, low power, and small size makes the Visual-Inertial
Navigation System (VINS) a critical foundational compo-
nent for the aforementioned applications [6]. VINS, without
knowing global information, e.g., GPS, loop-closures, or a
prior map, can only provide ego-motion information whose
errors may grow unbounded. Over the past two decades, a
particular focus has been placed on leveraging a priori map
as additional costly sensors are not required [7]–[13].

A crucial component of successful map-based localization
is an accurate place retrieval algorithm such as DBoW
[14], placeless [15], or NetVLAD [16], which allows for
recovery of correspondence information to construct con-
straints to historical information. However, these methods
may be vulnerable to viewpoint variations, poor viewpoint
coverage limiting recall, scene ambiguities, and sensitivities
to environmental changes after mapping [17].

To address the aforementioned challenges, in this work, we
propose to avoid the need for place recognition via the ren-
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dering of novel synthetic views adjacent to the current state
estimate, enabling high-quality and informative loop-closure
constraints that are not susceptible to these failure modes.
Specifically, we introduce a new paradigm for map-based
localization which leverages the recent Neural Radiance
Fields (NeRF) advancements in deep learning to compress
the collection of images, e.g. a prior keyframe image map,
into a trained network, and then leverage during localization
the high-fidelity image rendering of synthesize novel camera
viewpoints. While NeRF is able to accurately reconstruct
complex environments has encouraged researchers to build
dense NeRF maps [18], [19], we focus on achieving real-
time localization on edge devices with limited computational
resources and thus look to leverage the comparably cheaper
novel viewpoint rendering via hashing [20].

To this end, we effectively leverage NeRF as an a priori
map while maintaining real-time drift-free VINS localization.
The main contribution of this work includes:

• To the best of our knowledge, this is the first real-time
NeRF-based VINS that tightly-couples a priori NeRF
map to enable drift-free localization.

• We conduct extensive numerical studies to demonstrate
the impact of different NeRF map construction methods
and descriptor algorithms on rendered NeRF views, and
environmental changes.

• The proposed NeRF-VINS is among the first to demon-
strate centimeter-level drift-free pose estimates on an
edge platform (Jetson AGX Orin rendering at over 15
Hz) and outperform existing state-of-the-art methods
which leverage prior map information.

II. RELATED WORK

In this section, we provide an overview of methods related
to visual and visual-inertial and NeRF-based localization.

A. Prior Map-based Classical Localization

Single-View Visual Localization: The classical structure-
based method is the Perspective-n-Point (PnP) solver within
a RANSAC loop for robustness [21], [22]. The 2D-3D
correspondences between the query image and a map points
are typically found through the matching of local feature
descriptors [23]–[27]. To mitigate the complexity increase
as the map size grows, image retrieval methods that narrow
down the search space typically retrieve top similar matches
(place recognition) and query keypoints in the region de-
fined by these images for correspondences (local matching)
[9], [28]. The quality of this approach heavily relies on
the effectiveness of the image retrieval methods. DBoW
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[14] has gained great popularity thanks to its efficiency,
but recent deep learned-based HF-Net [9], which leverages
NetVLAD [16] and SuperPoint [29] for global retrieval and
local matching respectively, has demonstrated state-of-the-art
performance in localization tasks. Although there are end-
to-end deep learning methods available, their poor accuracy
and complexity still make structure-based methods appealing
[30]–[32]. Additionally, all discussed methods can suffer
from global descriptor ambiguities, particularly in scenarios
with sparse images or significant changes in viewpoint,
and poor recall due to limited view coverage of the scene
which we aim to address through the proposed NeRF-VINS
rendering paradigm.

Visual-Inertial Localization: As compared to single-view
visual localization, visual-inertial localization aims to con-
tinuously provide estimates against a prior map and can
leverage historical information to reduce the search space
and thus complexity. There is a rich literature, for which
we refer the interested reader to the references in [10] for a
summary. One which is of particular relevance to this work is
the open-sourced ROVIOLI [12] extension of ROVIO [33],
[34] which performs 2D-3D matches against an optimized
global map commonly constructed using maplab [12], [13].

SLAM Systems: In contrast to previous approaches that
construct maps offline for accurate localization, SLAM
builds maps online and utilizes them via loop closures. A
typical SLAM architecture includes a real-time thread for
camera pose tracking using sparse keypoints [35], [36] or
dense/semi-dense representations [37], [38], along with a
non-real-time thread that optimizes and constructs the map.
These methods use classical image retrieval techniques to
query images for loop closure, which can be affected by
limited viewpoint coverage and ambiguities.

B. Neural Radiance Fields

The work [39] introduced the NeRF methodology and
revolutionized scene representation, novel view generation,
and high-fidelity rendering. Later works such as BARF [40]
and NeRF [41] have shown that knowing the exact poses
is not required, while iMAP [42] and NICE-SLAM [43]
showed that the joint optimization of poses in respect the
NeRF can further improve performance. There additionally
have been works that have focused on map representation
[18], and the integration within SLAM [19], [44].

As compared to the online generation of NeRF maps, we
instead look to leverage a previously built NeRF to provide
high-quality loop-closure information and bound estimator
drift. Only a few works have focused on leveraging NeRF to
provide prior environmental information for the betterment
of visual tracking. iNeRF [45] proposed to localize camera
poses by optimizing the photometric error between the real
and NeRF-generated images within a small static environ-
ment context but remained sensitive to the initial pose guess
and large computational cost. More recently, Loc-NeRF [46]
was proposed to employ a particle filter to remove the need
for an initial guess. While this method does not require any
initial guess, it necessitates image rendering for each particle,
which could easily become computationally prohibitive if

Fig. 1: Overview of the proposed NeRF-VINS, where {G} is
the global VIO frame, {N} is the map frame, {K} denotes
the NeRF rendered image. {I} and {C} are IMU and camera
frame, respectively.

using a large number of particles. Another work in this
family is by Adamkiewicz et al. [47] which leveraged a
pre-trained NeRF map to localize and additionally optimize
future trajectories. As compared to these works which are
constrained by rendering speed and their alignment com-
putational complexity, the proposed NeRF-VINS combines
the novel viewpoint rendering strength with the efficient,
accurate, and consistent MSCKF-based VINS.

III. NERF-VINS ESTIMATOR DESIGN

Built on top of the MSCKF-based OpenVINS [48], [49],
the proposed NeRF-VINS estimator extends the MSCKF to
fuse the prior NeRF map in a tightly-couple manner (see
Fig. 1). As such, for presentation brevity, in the following,
we will primarily focus on visual measurement update.

In particular, at time tk, the system state xk consists of the
current inertial navigation states xIk , historical IMU poses
xTk

, and a subset of 3D environmental point features, xf :

xk =
[
x⊤
Ik

x⊤
Tk

x⊤
f

]⊤
(1)

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(2)

xTk
=

[
Ik
G q̄⊤ Gp⊤

Ik
. . .

Ik−c

G q̄⊤ Gp⊤
Ik−c

]⊤
(3)

xf =
[
Gp⊤

f1
. . . Gp⊤

fi

]⊤
(4)

where I
Gq̄ is the unit quaternion (IGR in rotation matrix form)

that represents the rotation from the global {G} GpI , GvI ,
and Gpfi are the IMU position, velocity, and i’th point
feature position in {G}; bg and ba are the gyroscope and
accelerometer biases. Note that other state variables can be
included, e.g., spacial-temporal calibration, but have been
omitted for clarity.

The state is propagated over time based on the IMU
measurements. A canonical three-axis IMU provides linear
acceleration, Iam, and angular velocity measurements, Iωm.
The IMU nonlinear kinematics is generically given by [50]:

xIk+1
= f

(
xIk ,

Iak,
Iωk,nIk

)
(5)

where nI = [n⊤
g n⊤

a n⊤
wg n⊤

wa]
⊤; n⊤

g and n⊤
a are Gaussian

white noises, and nwg and nwa are the random walk bias
noises of gyroscope and accelerometer, respectively. With
this model (5), we can perform EKF propagation of the state
estimate and covariance [48].
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A. Measurement Update with Real Images

As in [49], the bearing measurements of detected features
seen at time tk are modeled as follows:

zCk
= hc(xTk

,Gpf ) + nCk
=: Λ(Ckpf ) + nCk

(6)
Ckpf = C

I R
Ik
G R(Gpf − GpIk) +

CpI (7)

where Λ
(
[x y z]⊤

)
=

[
x/z y/z

]⊤
and nCk

is the white
Gaussian noise. Linearizing Eq. (6) the following measure-
ment residual:

rCk
= zCk

− hc(x̂Tk
,Gp̂f ) ≃ HT x̃Tk

+Hf
Gp̃f + nCk

(8)

where HT and Hf are the Jacobian matrix of the measure-
ment with respect to each state. We keep the long-tracked
features in the state till lost in order to leverage their future
observations, while the short-tracked features are updated via
the efficient MSCKF nullspace projection [48].

B. Measurement Update with NeRF Images

When a camera image reading is received, a NeRF render
is triggered at a pose with a small horizontal positional offset
(e.g., 10 cm, as in our experiments) to the current camera
pose. This synthetic image should have a significant overlap-
ping field of view (FOV) with the current real image, which
facilitates high-quality feature matching. The small positional
offset also enables robust triangulation and accurate feature
matching between the real and synthetic images even when
the camera is static.

Once the rendering is completed, descriptor-based feature
matching is performed to the current image, where a 2D-
to-2D prior keyframe measurement model is leveraged [51].
For example, consider that from the rendered image we get
a bearing measurement, zNk

, which is related to the state as:

zNk
= hn

(
Gpf

)
+ nNk

=: Λ(Kpf ) + nNk
(9)

Kpf = KpN + sKNR(NpG + N
GRGpf ) (10)

where s is the scale factor of the map and nNk
is the zero

mean Gaussian noise. Note that we model the bearing as
only a function of the feature Gpf , and consider the map
transform {s,NGR,NpG} (see Sec. IV-C) to be known and
the rendered camera pose {KNR,KpN} to have some known
orientation and position uncertainty {NG θ̃, N p̃G}. Thus, we
have the following linearized model:

rNk
= zNk

− hn(
Gp̂f ) = sHΛ

K
NRN

GRGp̃f + n′
Nk

(11)

where ⌊·×⌋ is the skew-symmetric matrix and

n′
Nk

= sHΛ
K
NR(⌊NGRGpf×⌋NG θ̃ + N p̃G) + nNk

(12)

The linearized model can be used to update the features in the
state or can be stacked with the real image measurements (8)
to perform (SLAM or MSCKF) EKF update.

IV. NERF-VINS SYSTEM INTEGRATION

Armed with the NeRF-VINS estimation theory presented
in the previous section, we now describe how to integrate the
NeRF model and feature matching between synthetic and real
images to form a tightly-coupled system.

In particular, our system leverages the open-source Instant-
NGP [20] for rendering and prior map training. The Open-
VINS [49] frontend is modified to incorporate SuperPoint

Fig. 2: Exemplary rendered images for testing matching
methods. Left: Rendered image with full resolution. Right:
Rendered image with 141x80 resolution and up-scaled with
FSRCNN [52]

TABLE I: Average descriptor extraction time, number of
matches, and ATE reported on the UD AR Table 1-8 dataset
[59] for different matching methods.

AKAZE BRISK ORB KAZE SP SP Opt.

Time (ms) 31 88 13 140 15 7
Matches 55 85 20 117 31 30

ATE (deg/m) 2 FAIL 5 FAIL 6 FAIL 2.40 / 0.29 1.16 / 0.15 1.18 / 0.16

descriptors using Tensor-RT pipeline [53]. We used OpenCV
[54] and CUDA to convert GPU-rendered images to a 32bit-
float RGB image on the CPU. Additional care has been taken
to convert the NeRF-rendered image coordinate system to a
right-hand coordinate system by inverting the y and z axes
of InstantNGP. The code is written in C++ and CUDA and
runs on Jetson AGX Orin unless specified.

A. Feature Descriptors

A crucial component is the ability to match features
between the current frame and the rendered NeRF viewpoint.
Thus significant effort has been spent to investigate the
performance of various feature matching methods such as
AKAZE [55], KAZE [56], BRISK [57], ORB [58], and
the selected SuperPoint [29]. For this test, we choose a
challenging scenario by rendering at 1/6 of the original size
and is upscaled using FSRCNN [52], see Fig. 2. Shown in
Tab. I, the average descriptor extraction time, number of
matches between the rendered and current camera image, and
Absolute Trajectory Error (ATE) of VINS for each method
have been compared. It is clear that the handcrafted matching
methods (AKAZE, BRISK, ORB, and KAZE) often fail and
show large errors which is expected due to the limited fidelity
in the up-sampled low-resolution NeRF image. On the other
hand, SuperPoint (SP) and its optimized variant (SP Opt.) are
shown to be robust to these conditions and report the highest
accuracy and shortest descriptor extraction time. This leads
us to select the optimized SuperPoint for its robustness and
efficiency for synthetic NeRF to real image matching.

B. Image Rendering and Feature Matching

Rendering NeRF images remains a computationally ex-
pensive operation, particularly on embedded devices like the
Jetson AGX Orin. It takes approximately 660 ms (2Hz) to
render an image with dimensions 424 x 240. To improve
render speed and minimize loop-closure latency, we use a
two-step process. Initially, we generate NeRF renders at half
resolution (212 x 140). Then, we employ the lightweight
FSRCNN [52] for up-sampling to the original size. This
approach strikes a balance between computational speed

3



(a) DBoW (b) NetVLAD (c) Ours

Fig. 3: Qualitative study of failure cases of classical place recognition method. Green and Red lines indicate inliers and
outliers, respectively. Input image (left of each column) and retrieved, rendered for the NeRF case, image is shown (right
of each column).

Fig. 4: Qualitative comparison of NeRF Map trained with
different methods using 543 keyframe images. The top row
shows the PSNR histograms and the bottom row shows
exemplary images rendered from each method.

and image quality, as demonstrated in Fig. 2. We further
enhance performance by reducing resolution levels and the
hashing size of the model in InstantNGP [20]. Additionally,
we minimize multiple copy times to the CPU by directly
transferring GPU-rendered images.

The rendering is run on a separate thread to prevent block-
ing of the real-time VINS. The SuperPoint feature matching
network has been modified to use a lightweight ResNet18
[60] and optimized to support a 16-bit floating point using the
TensorRT pipeline [53] to further improve performance. This
secondary thread which performs rendering and matching
runs at an adequate speed of 15Hz on the Jetson to aid in
real-time estimation.

C. NeRF Map Generation
We now detail how we build the prior NeRF map to aid

visual-inertial localization. We explored a variety of Bundle
Adjustment (BA) methods to examine how they impact the
map quality of the NeRF created by InstantNGP [20] on the
Table 5 dataset (see Fig. 1 offline part). First, maplab [13],
which optimizes both visual reprojection and inertial errors in

a visual-inertial BA, resulting 543 keyframes over the dataset
was used. These keyframes were also fed into COLMAP
[26], [27] which does up-to-scale bundle adjustment. Finally,
the groundtruth motion capture pose and inertial information
was processed using vicon2gt [61] to recover the pose
of each keyframe. We use the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) to evaluate
the quality of rendered images [39].

Most importantly, as shown in Fig. 4, we find that the
vision-only BA of COLMAP (without scale) yields the
superior map quality. It is our conjecture that the fusion
of inertial information has introduced additional errors by
requiring additional calibration and sensor synchronization.
However, the groundtruth (motion capture) pose and inertial
optimization do not intrinsically minimize any re-projection
errors and thus the poses are likely not optimal in the
desired geometric re-projection errors crucial for high quality
NeRF creation. Nevertheless, this calls for future in-depth
investigation. For this reason, we chose to use COLMAP
poses to train our map. To correct the ambiguous scale,
we aligned the COLMAP and groundtruth poses based on
similarity transformation (sim3).

V. EXPERIMENTAL VALIDATION

We validate the proposed NeRF-VINS and baseline meth-
ods on the recently released AR Table Dataset [62]. This
dataset is ideal for NeRF reconstruction due to its object-
centric trajectories which observe a table placed centrally.
This dataset additionally enables us to evaluate the robustness
of algorithms to changing environments (see Fig. 6), due to
the addition of a whiteboard for the three datasets (Table 5-7)
and the moving of the table to the side of the room in Table 8.
Unless specifically noted, all prior map methods leverage
Table 1 for datasets 1-4 and Table 5 for 5-7. The dataset has
30Hz RGB images and 400Hz IMU from an Intel Realsense
D455 and groundtruth poses from a full-room OptiTrack rig.
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In particular, for comprehensive validation, we evaluated
the following state-of-the-art methods:

1) Single-Shot Visual Localization: The open-source
Hierarchical Localization (HLoc) system [9] that used
NetVLAD for image retrieval, and SuperPoint [29] descriptor
establishes a baseline for expected state-of-the-art perfor-
mance. In this system, local matching is performed using
a nearest-neighbor search with a ratio test and geometric
verification, which aligns with our pipeline. Notably, the
use of Lightglue [63] matching remains computationally
expensive (16 ms for a pair, thus 800 ms for top 50 on
A3000 GPU) and did not yield substantially better results.
The same images and poses that are used to train the NeRF
are leveraged in its map. We evaluated the performance with
the top 5 and 50 nearest neighbor matches: HLoc (top5) and
HLoc (top50), respectively. Due to its single-shot nature, we
found that for many image localization accuracy was poor,
and thus in most results presented we select an inlier set
of good quality success to provide a reasonable comparison.
Note that the below map-based methods and proposed NeRF-
VINS provide continuous estimation.

2) Map-based Visual-Inertial Localization: For map-
based VINS, the filter-based ROVIO with additional re-
localization module [34] (ROVIOLI) from maplab [13] pro-
vides one of the closest direct comparisons to the proposed
method. We report the accuracy of both the odometry, ROVI-
OLI, and the map-aided, ROVIOLI+Map, which leverages
the maplab optimized prior map with the same keyframes
used to train the NeRF. VINS-Fusion [64], is additionally
compared against as it has support in its secondary loop-
closure thread for re-localization against a previous-built
relative pose graph using DBoW2 [14]. Thus we run VINS-
Fusion on the prior map dataset to generate a pose graph
that is then leveraged for sequential datasets (e.g. the whole
dataset Table 1 is used, as compared to the other approaches
that use a small set of keyframes). Both the odometry, VF,
the secondary pose graph without relocalization, VF+Loop,
and then the secondary thread which is able to relocalize
against the prior map pose graph, VF+Loop+Map.

A. Localization Accuracy

Table IV shows the Absolute Trajectory Error (ATE) of
each state-of-the-art AR Table dataset including the proposed
method on our desktop (termed Nerf-VINS (D)) equipped
with an A4500 NVIDIA graphics card and on Jetson AGX
Orin (termed Nerf-VINS (J)), and our VINS system (Open-
VINS [49]). It is clear that our proposed method achieved
one of the best accuracies over all algorithms while HLoc
showed competing results (note we excluded large failures
of HLoc from statistics). An interesting observation is that
VF reported higher accuracy than VINS-Fusion+Loop which
was due to multiple false loop closures induced by incorrect
DBoW matching. It is extrapolated that other method that
leverages DBoW showed lower performance than the pro-
posed method for the same reason. Additionally, the Relative
Pose Error (see Fig. 5) highlights the significant advantage
of incorporating NeRF map features, which effectively mit-
igates drift and maintains error within bounds. We attribute

Fig. 5: Boxplot of the relative error trajectory error statistics.
The middle box spans the first and third quartiles, while the
whiskers are the upper and lower limits.

this performance gain is the ability to effectively utilize
NeRF in our pipeline that can provide good novel scenes
resulting in good viewpoints and a good number of quality
measurements (Fig. 3). Though HLoc was able to provide
good accuracy, there were many failures that were excluded
from the statistics, and moreover, the classification of inliers
and outliers for real-time estimation is challenging.

We additionally investigated the average timing of each
function of our system and compared it with HLoc. Note
that we disabled the multi-threading of our system for a
fair comparison. The results reported in Table III show the
total time of the proposed system takes 30 ms which is
almost half of the total timing of HLoc with top 5 match
results. Though the performance of HLoc can be improved
by retrieving more images, however, this will introduce
a significant computation burden for local matching and
PnP, making it difficult to run in real-time (HLoc (top 50)
pipelines take 331.9 ms per frame as shown in Table III).
This clearly shows that our lightweight pipeline is capable
of high-rate rendering of the NeRF images enabling real-time
localization fully leveraging the NeRF map information.

B. Robustness to Environment Changes
To assess our system in generating favorable viewpoints

enabling robust localization even when the environment is
changed after mapping, we examined a more challenging
scenario: employing Table 1 as the map and running on Table
5-8 each with distinct environments (refer to Fig. 6). Our
system still shows one of the best records showing robust
localization performance which is also competitive with
HLoc (note that HLoc encounters numerous failures, which

Fig. 6: Environmental changes over different sequences of
AR Table dataset.
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TABLE II: The Absolute Trajectory Errors (ATE) of each state-of-the-art algorithm on the AR Table dataset (degree/cm).
The best results are highlighted with a bold green color.

Algorithms Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Average
M

ap
-b

as
ed

Nerf-VINS (D) 0.51 / 1.8 0.27 / 1.0 0.50 / 1.0 0.35 / 1.5 0.43 / 1.4 0.59 / 1.9 0.46 / 1.6 0.44 / 1.5
Nerf-VINS (J) 0.47 / 2.0 0.29 / 0.8 0.50 / 0.9 0.31 / 1.6 0.43 / 1.3 0.54 / 1.9 0.51 / 1.7 0.44 / 1.5
VF+Loop+Map 0.93 / 4.1 1.27 / 7.1 0.88 / 6.1 1.39 / 5.2 0.72 / 3.2 0.93 / 3.7 1.68 / 5.3 1.11 / 5.0
ROVIOLI+Map 0.54 / 2.1 1.30 / 3.6 0.67 / 2.2 1.15 / 4.3 0.86 / 3.7 2.33 / 17.9 2.42 / 13.6 1.32 / 6.8
HLoc (top5)* 0.41 / 1.0 0.40 / 1.6 0.38 / 1.4 0.31 / 1.3 0.41 / 1.2 0.60 / 1.6 0.51 / 2.0 0.48 / 1.4

HLoc (top50)* 0.41 / 1.0 0.33 / 1.4 0.35 / 1.2 0.30 / 1.2 0.40 / 1.2 0.57 / 1.6 0.51 / 2.0 0.45 / 1.3

V
IN

S

OpenVINS 1.17 / 5.43 0.55 / 2.16 1.02 / 3.40 1.21 / 5.88 0.50 / 3.28 1.04 / 3.73 1.31 / 7.23 0.97 / 4.5
ROVIOLI 2.05 / 7.08 1.11 / 4.08 2.63 / 7.86 1.48 / 11.07 2.50 / 12.08 1.10 / 4.25 3.12 / 15.92 2.00 / 8.90
VF+Loop 1.25 / 6.7 1.18 / 9.2 0.95 / 6.5 1.10 / 5.7 0.88 / 2.8 0.98 / 11.2 1.57 / 10.1 1.13 / 7.5

VF 1.62 / 5.8 1.32 / 3.0 1.47 / 7.6 1.75 / 5.6 1.12 / 3.4 0.98 / 5.3 1.67 / 9.3 1.42 / 5.7
* Large failures (errors larger than 5 degrees or 10 cm) of HLoc (top5) and HLoc (top50) are excluded from statistics:

HLoc (top5) failure rates: Table 2 37%, Table 3 5.5%, Table 4 0.4%, Table 5 0.5%, Table 6 1%, Table 7 0.5%
HLoc (top50) failure rates: Table 2 39%, Table 3 2.4%, Table 4 0.4%

TABLE III: Average timing for proposed NeRF-VINS and
HLoc pipeline in milliseconds. Recorded on a laptop with
A3000 GPU and 11th Gen Intel(R) Core(TM) i7-11800H @
2.30GHz CPU.

Step Nerf-VINS (D) HLoc (top 5) HLoc (top 50)

Tracking 8.5 - -
Rendering / NetVLAD 11.6 12.9 12.9
Superpoint Extraction 5.4 7.6 7.6

Local Matching 1.7 15.2 153.7
Update / PnP 2.5 21.3 157.7

Total 29.8 57.0 331.9

TABLE IV: AR table ATE (degree / cm) and Table 1 is used
as a map for the following sequence. Blanks indicate failures.

Algorithm Table 5 Table 6 Table 7 Table 8 Average

Nerf-VINS (J) 0.49 / 3.0 0.61 / 4.1 0.54 / 3.3 0.38 / 3.0 0.50 / 3.4
HLoc (top5)* 0.61 / 3.5 0.64 / 3.6 0.61 / 3.1 0.50 / 3.7 0.59 / 3.5
HLoc (top50)* 0.65 / 3.4 0.67 / 3.6 0.62 / 3.0 0.47 / 3.1 0.60 / 3.3
VF+Loop+Map 0.95 / 12.4 0.82 / 3.3 1.60 / 9.3 2.44 / 9.9 1.45 / 8.7
ROVIOLI+Map 2.48 / 11.3 1.89 / 12.9 2.59 / 14.8 - / - 2.32 / 13.0

* HLoc error larger than 5 degrees or 10 cm are removed to be presentable
HLoc (top5) failure rates: Table 5 38.9%, Table 6 36.8%, Table 7 37.1%,
Table 8 30.5%
HLoc (top50) failure rates: Table 5 23.9%, Table 6 29.4%, Table 7 21.8%,
Table 8 10.7%

are omitted from consideration). In contrast, our system
consistently delivers advantageous viewpoints, facilitating
large inlier measurements (Fig. 3).

As can be seen from Fig. 7, around 80% percent of images
for our pipeline are localized within a 2.5 cm high accuracy
threshold, while HLoc is only around 70% when matching
with the top 50 images. Our system is able to localize almost
all the images within a 7.5 cm position error, while HLoc
using the top 5 images and top 50 can only localize 80.9%
and 89.3% images within a 20 cm error bound, respectively.

C. Discussion and Limitations

While we have demonstrated that the proposed method
exhibits superior localization performance, similar to other
NeRF methods, our map is also object-centric. To train
the map effectively, we require images that surround the
object, which may not be scalable to larger environments.
We argue that this limitation can be addressed by leveraging

Fig. 7: The percentage of images successfully localized under
a certain position error threshold using Table 1 as a map to
evaluate Table 1-8.

the combination of F2-Nerf [65] and Block-Nerf [66], which
does not assume to have bounded camera trajectory, and
the other one trains large scale NeRF maps. Our pipeline
can benefit from faster-rendering speed as we can leverage
more viewpoints for stronger constraints. This is a quickly
changing landscape with recent works such as Kerbl et al.
[67] offering greater rendering speed and opening a new
avenue for exploration. We leave these as future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a real-time tightly-
coupled NeRF-VINS algorithm. Built on top of the MSCKF-
VINS, the proposed NeRF-VINS extends to efficiently and
accurately fuses the NeRF synthetic images to overcome the
limited viewpoint challenges commonly encountered by the
keyframe map-based localization methods. In particular, as
NeRF is able to generate novel views from any viewpoint,
we exploit this advantage to synthesize better views to
provide higher inlier matches that allow for full utilization
of the map information, resulting in performance gain. In the
future, we will investigate NeRF map-based initialization i.e.,
initializing the transform between the IMU and map frames.
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[5] C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler,
and M. Pollefeys, “3d visual perception for self-driving cars using a
multi-camera system: Calibration, mapping, localization, and obstacle
detection,” Image and Vision Computing, 2017.

[6] G. Huang, “Visual-inertial navigation: A concise review,” in Proc.
International Conference on Robotics and Automation, Montreal,
Canada, May 2019.

[7] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and
R. Siegwart, “Get out of my lab: Large-scale, real-time visual-inertial
localization.” in Robotics: Science and Systems, vol. 1, 2015, p. 1.

[8] A. Kasyanov, F. Engelmann, J. Stückler, and B. Leibe, “Keyframe-
based visual-inertial online slam with relocalization,” in 2017
IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, 2017, pp. 6662–6669.

[9] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in CVPR, 2019.

[10] P. Geneva and G. Huang, “Map-based visual-inertial localization: A
numerical study,” in Proc. International Conference on Robotics and
Automation, Philadelphia, USA, May 2022.

[11] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Transactions on Robotics, 2009.

[12] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen,
I. Gilitschenski, and R. Siegwart, “maplab: An Open Framework for
Research in Visual-inertial Mapping and Localization,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1418–1425, 2018.

[13] A. Cramariuc, L. Bernreiter, F. Tschopp, M. Fehr, V. Reijgwart,
J. Nieto, R. Siegwart, and C. Cadena, “maplab 2.0 – A Modular and
Multi-Modal Mapping Framework,” IEEE Robotics and Automation
Letters, vol. 8, no. 2, pp. 520–527, 2023.
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