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3D LiDAR: accurate range measurements but
suffers from point cloud sparsity, high cost, and kg
lower collection rates

¢ LiDAR Plane Features
® LiDAR Edge Features

Camera: informative appearances, light-
weight, low-cost, but susceptible to lighting
conditions

IMU: Proprioceptive sensor which measures the
velocity and linear acceleration of the sensing Fig 1. LiDAR and visual features
platform in a high frequency used in the proposed LIC-Fusion.



Contributions

e Design of a LiDAR-inertial-camera (LIC)
odometry
e With between different sensor

modalities. Correlations between states are explicitly modeled and
analytically derived.

e IMU measurements, sparse visual features, and two different sparse
LiDAR features are used for update in a light-weight EKF framework.

e \alidate proposed system in both indoor and outdoor environments even
under extremely and show superior performance over

state-of-the-art.



System Overview
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Fig 2. Data flow of LIC-fusion in a EKF based MSCKF framework.

e System composed of two main parts: (i) . Propagation by high-frequency
IMU, (ii). Update by sparse visual and LiDAR feature

e State vector including the between sensors, cloned IMU states at
the time instant of receiving the image and LiDAR scan:
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e States are and the covariance matrix is maintained. A



Propagation

* Propagate up to IMU time t;,_, which is the
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e Augment the state vector by stochastic cloning

* The propagation is a function of the temporal g 3. Time offset between IMU and
and spatial extrinsics, which allow our Camera/LiDAR
measurements model to update the poses and

extrinsics jointly.



Update by Measurements

e [iDAR Features: extract high and low curvature

sections of LiDAR scan rings which correspond to
features [Ji Zhang 2014].

Matching those features between scans.

e Visual features: initialize in 3D by triangulation
Null-space operations are performed for remove
the dependency of 3D features.

Fig 5. Measurements from
multiple modalities for update.



Experiments Results | : Outdoor
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Fig 6. The self-
assembled LiDAR- Fig 7. Estimated trajectories compared with MSCKF, Loam, Ground
inertial-camera rig . truth from RTK-GPS. And the Average mean squared errors.

e ¢ 800 meters in length recorded in a university campus scenario
while mounting the sensors rig on a car.

e [IC-fusion shows superior performance regarding accuracy.



Experiments Results | : Outdoor

Table 1: Trajectory RMSE with different levels of prior map noises.

MSCKF LIC-Fusion LOAM
Average ATEs (m) 10.75 4.06 23.08
1 Sigma (m) 3.56 3.42 2.63

e 800 meters in length recorded in a university campus scenario while
mounting the sensors rig on a car.

e [IC-fusion shows superior performance regarding accuracy.



Experiments Results Il : Indoor
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Fig 6. The Indoor-A scenario. Fig 7. The estimated trajectories in
indoor scenarios.

e Tested in multiple indoor scenarios while holding the sensors rig by hand.

e [ IC-fusion shows superior performance regarding accuracy.



Experiments Results lll : Aggressive Motion Test
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Fig 8. Raw IMU measurements over the Fig 9. The estimated trajectories over the
high-dynamic Indoor-C sequence. high-dynamic Indoor-C sequence.
e Shake the sensors rig by hand. Violent rotation and
acceleration: raw IMU measurements over 8 rad/s and 25 m/s”2 at some

instants.

e [ IC-fusion shows superior performance regarding robustness to high
dynamics.



System Demonstration
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Conclusion

e Proposed tightly-coupled, light-weight LiDAR-inertial-camera (LIC) odometry.

e With online spatial and temporal calibrations between different sensor
modalities.

e System shows robustness to high dynamics.

e Outperforms state-of-the-art due to fully utilizing multiple types of
measurements in a tightly-coupled way.
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Thanks for listening!

Xingxing Zuo
Xingxingzuo@zju.edu.cn
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